The spherical symmetrization and NED-sets on a hyperplane
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 248-258
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The simple sufficient condition of NED-sets on a hyperplane are derived in terms of spherical approachability of its points from complement of this set on the hyperplane.
@article{ZNSL_2012_404_a15,
     author = {V. A. Shlyk},
     title = {The spherical symmetrization and {NED-sets} on a~hyperplane},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {248--258},
     year = {2012},
     volume = {404},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a15/}
}
TY  - JOUR
AU  - V. A. Shlyk
TI  - The spherical symmetrization and NED-sets on a hyperplane
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 248
EP  - 258
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a15/
LA  - ru
ID  - ZNSL_2012_404_a15
ER  - 
%0 Journal Article
%A V. A. Shlyk
%T The spherical symmetrization and NED-sets on a hyperplane
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 248-258
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a15/
%G ru
%F ZNSL_2012_404_a15
V. A. Shlyk. The spherical symmetrization and NED-sets on a hyperplane. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 248-258. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a15/

[1] V. V. Aseev, “$NED$-mnozhestva, lezhaschie v giperploskosti”, Sib. mat. zh., 50:5 (2009), 967–986 | MR | Zbl

[2] V. V. Aseev, A. V. Sychev, “O mnozhestvakh, ustranimykh dlya prostranstvennykh kvazikonformnykh otobrazhenii”, Sib. mat. zh., 15:6 (1974), 1213–1227 | MR | Zbl

[3] S. K. Vodopyanov, V. M. Goldshtein, “Kriterii ustranimosti mnozhestv dlya prostranstv $L^1_p$, kvazikonformnykh i kvaziizometricheskikh otobrazhenii”, Sib. mat. zh., 18:1 (1977), 48–68 | MR | Zbl

[4] B. Gelbaum, D. Olmsted, Kontrprimery v analize, Mir, 1967 | Zbl

[5] V. Golubev, Odnoznachnye analiticheskie funktsii: Avtomorfnye funktsii, M., 1961 | MR

[6] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, M., 1966 | Zbl

[7] Yu. V. Dymchenko, V. A. Shlyk, “Dostatochnost semeistva lomanykh v metode modulei i ustranimye mnozhestva”, Sib. mat. zh., 51:6 (2010), 1298–1315 | MR | Zbl

[8] A. P. Kopylov, “Ob ustranimosti ploskikh mnozhestv v klasse trekhmernykh kvazikonformnykh otobrazhenii”, Metricheskie voprosy teorii funktsii i otobr., 1, Naukova dumka, Kiev, 1969, 21–23 | MR

[9] V. A. Shlyk, “Vesovye emkosti, emkosti kondensatorov i isklyuchitelnye mnozhestva po Fyuglede”, Dokl. RAN, 332:4 (1993), 428–431 | MR | Zbl

[10] L. Ahlfors, A. Beurling, “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[11] B. Fuglede, “Extremal length and functional completion”, Acta Math., 126 (1957), 171–219 | DOI | MR

[12] M. Ohtsuka, Extremal length and precise functions, GAKUTO Intern. Series, 9, Gakkōtosho, 2003 | MR | Zbl

[13] J. Väisälä, “On the null-sets for extremal distances”, Ann. Acad. Sci. Fenn. Ser. A, 322 (1962), 1–12 | MR

[14] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lect. Notes Math., 1319, Springer-Verlag, 1988 | MR | Zbl