Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 184-198
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note, we prove positivity of Maclaurin coefficients of polynomials written in terms of rising factorials and arbitrary log-concave sequences. These polynomials arise naturally when studying log-concavity of rising factorial series. We propose several conjectures concerning zeros and coefficients of a generalized form of those polynomials. We also consider polynomials whose generating functions are higher order Toeplitz determinants formed by rising factorial series. We make three conjectures about these polynomials. All proposed conjectures are supported by numerical evidence.
@article{ZNSL_2012_404_a10,
     author = {D. B. Karp},
     title = {Positivity of {Toeplitz} determinants formed by rising factorial series and properties of related polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--198},
     year = {2012},
     volume = {404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a10/}
}
TY  - JOUR
AU  - D. B. Karp
TI  - Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 184
EP  - 198
VL  - 404
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a10/
LA  - en
ID  - ZNSL_2012_404_a10
ER  - 
%0 Journal Article
%A D. B. Karp
%T Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 184-198
%V 404
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a10/
%G en
%F ZNSL_2012_404_a10
D. B. Karp. Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 27, Tome 404 (2012), pp. 184-198. http://geodesic.mathdoc.fr/item/ZNSL_2012_404_a10/

[1] M. Aissen, I. J. Schoenberg, A. M. Whitney, “On the generating function of totally positive sequences. I”, J. Anal. Math., 2 (1952), 93–103 | DOI | MR | Zbl

[2] Á. Baricz, M. E. H. Ismail, “Turán type inequalities for Tricomi confluent hypergeometric functions”, Constr. Appr., 2012 | DOI | MR

[3] R. W. Barnard, M. Gordy, K. C. Richards, “A note on Turán Type and Mean Inequalities for the Kummer Function”, J. Math. Anal. Appl., 349 (2009), 259–263 | DOI | MR | Zbl

[4] P. Brändén, “Iterated sequences and the geometry of zeros”, J. Reine Angew. Math., 658 (2011), 11—136 | MR

[5] L. Grabarek, “A new class of nonlinear stability preserving operators”, Complex Variables Ellipt. Eqs. Internat. J., 2011, 1–12 | DOI

[6] M. E. H. Ismail, A. Laforgia, “Monotonicity properties of determinants of special functions”, Constr. Appr., 26 (2007), 1–9 | DOI | MR | Zbl

[7] R. Yoshida, “On some questions of Fisk and Brändén”, Complex Variables Ellipt. Eqs. Internat. J., 2011, 1–13 | DOI

[8] S. Karlin, Total Positivity, v. I, Stanford Univ. Press, California, 1968 | MR

[9] D. B. Karp, S. M. Sitnik, “Log-convexity and log-concavity of hypergeometric-like functions”, J. Math. Anal. Appl., 364 (2010), 384–394 | DOI | MR | Zbl

[10] D. Karp, “Log-convexity and log-concavity of hypergeometric-like functions”, Internat. Conf. “Computational Methods and Function Theory” (Bilkent Univ., Ankara, Turkey, June 8–12, 2009), Abstracts, 36

[11] Problem Lists, Stability and Hyperbolicity, , Amer. Inst. Math. http://aimpl.org/hyperbolicpoly/3

[12] O. M. Katkova, A. M. Vishnyakova, “On sufficient conditions for the total positivity and for the multiple positivity of matrices”, Linear Algebra Appl., 416 (2006), 1083–1097 | DOI | MR | Zbl

[13] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and its Applications, Second edition, Springer, 2011 | MR

[14] I. V. Ostrovskii, N. A. Zheltukhina, “Parametric representation of a class of multiply positive sequences”, Complex Variables, 37 (1998), 457–469 | DOI | MR | Zbl

[15] I. J. Schoenberg, “On the zeros of the generating functions of multiply positive sequences and functions”, Ann. Math. (2), 62 (1955), 447–471 | DOI | MR | Zbl

[16] M. Tyaglov, Generalized Hurwitz polynomials, 2010, arXiv: 1005.3032v1