Harmonic analysis on the infinite-dimensional unitary-symplectic group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 118-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The goal of harmonic analysis on the infinite-dimensional unitary-symplectic group is to decompose a certain family of unitary representations of this group that replace the nonexisting regular representation and depend on a complex parameter. The aim of the present paper is to describe the decomposition for an integer parameter.
@article{ZNSL_2012_403_a8,
     author = {A. Osinenko},
     title = {Harmonic analysis on the infinite-dimensional unitary-symplectic group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--141},
     year = {2012},
     volume = {403},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a8/}
}
TY  - JOUR
AU  - A. Osinenko
TI  - Harmonic analysis on the infinite-dimensional unitary-symplectic group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 118
EP  - 141
VL  - 403
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a8/
LA  - ru
ID  - ZNSL_2012_403_a8
ER  - 
%0 Journal Article
%A A. Osinenko
%T Harmonic analysis on the infinite-dimensional unitary-symplectic group
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 118-141
%V 403
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a8/
%G ru
%F ZNSL_2012_403_a8
A. Osinenko. Harmonic analysis on the infinite-dimensional unitary-symplectic group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 118-141. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a8/

[1] A. Borodin, G. Olshanski, “Random partitions and the Gamma-kernel”, Adv. Math., 194:1 (2005), 141–202 | DOI | MR | Zbl

[2] V. Gorin, “Disjointness of representations arising in harmonic analysis on the infinite-dimensional unitary group”, Funct. Anal. Appl., 44:2 (2010), 92–105 | DOI | MR | Zbl

[3] Yu. A. Neretin, “Hua-type integrals over unitary groups and over projective limits of unitary groups”, Duke Math. J., 114 (2002), 239–266 | DOI | MR | Zbl

[4] A. Okounkov, G. Olshanski, “Limits of BC-type orthogonal polynomials as the number of variables goes to infinity”, Jack, Hall–Littlewood, and Macdonald polynomials, Amer. Math. Soc. Cont. Math. Ser., 417, 2006, 281–318 | MR | Zbl

[5] G. Olshanski, “The problem of harmonic analysis on the infinite-dimensional unitary group”, J. Funct. Anal., 205 (2003), 464–524 | DOI | MR | Zbl

[6] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158 (2004), 551–642 | DOI | MR | Zbl

[7] G. Olshanskii, A. Osinenko, “Mnogomernye mnogochleny Yakobi i integral Selberga”, Funkts. anal. i pril., 46:4 (2012), 31–50 | DOI

[8] A. Osinenko, “Garmonicheskii analiz na beskonechnomernoi unitarnoi gruppe”, Zap. nauchn. semin. POMI, 390, 2011, 237–285