On realizations of representations of the infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 110-117
Voir la notice de l'article provenant de la source Math-Net.Ru
Denote by $\mathbb N$ the set of positive integers $\{1,2,\dots\}$. Let $\mathfrak S_\mathbb X$ stand for the group of all finite permutations of the set $\mathbb X=-\mathbb N\cup\mathbb N$. Consider the subgroups $$
\mathfrak S_\mathbb N=\{s\in\mathfrak S_\mathbb X\colon s(-k)=-k\text{ for all }k\in\mathbb N\}
$$
and
$$\mathfrak D=\{s\in\mathfrak S_\mathbb X\colon -s(k)=s(-k)\text{ and }s(\mathbb N)=\mathbb N\}.
$$
Given a spherical representation $\pi$ of the pair $(\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N},\mathfrak D)$, we construct a spherical representation $\Pi$ of the pair $(\mathfrak S_\mathbb X,\mathfrak D)$ such that the restriction of $\Pi$ to the group $\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N}$ coincides with $\pi$.
@article{ZNSL_2012_403_a7,
author = {N. I. Nessonov},
title = {On realizations of representations of the infinite symmetric group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--117},
publisher = {mathdoc},
volume = {403},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a7/}
}
N. I. Nessonov. On realizations of representations of the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 110-117. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a7/