On realizations of representations of the infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 110-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $\mathbb N$ the set of positive integers $\{1,2,\dots\}$. Let $\mathfrak S_\mathbb X$ stand for the group of all finite permutations of the set $\mathbb X=-\mathbb N\cup\mathbb N$. Consider the subgroups $$ \mathfrak S_\mathbb N=\{s\in\mathfrak S_\mathbb X\colon s(-k)=-k\text{ for all }k\in\mathbb N\} $$ and $$\mathfrak D=\{s\in\mathfrak S_\mathbb X\colon -s(k)=s(-k)\text{ and }s(\mathbb N)=\mathbb N\}. $$ Given a spherical representation $\pi$ of the pair $(\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N},\mathfrak D)$, we construct a spherical representation $\Pi$ of the pair $(\mathfrak S_\mathbb X,\mathfrak D)$ such that the restriction of $\Pi$ to the group $\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N}$ coincides with $\pi$.
@article{ZNSL_2012_403_a7,
     author = {N. I. Nessonov},
     title = {On realizations of representations of the infinite symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--117},
     publisher = {mathdoc},
     volume = {403},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a7/}
}
TY  - JOUR
AU  - N. I. Nessonov
TI  - On realizations of representations of the infinite symmetric group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 110
EP  - 117
VL  - 403
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a7/
LA  - ru
ID  - ZNSL_2012_403_a7
ER  - 
%0 Journal Article
%A N. I. Nessonov
%T On realizations of representations of the infinite symmetric group
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 110-117
%V 403
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a7/
%G ru
%F ZNSL_2012_403_a7
N. I. Nessonov. On realizations of representations of the infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 110-117. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a7/