A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 95-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A class of concatenation dynamical systems is introduced. Various automorphisms, including the Morse and Pascal automorphisms, can be regarded as automorphisms of this class. In this realization, a natural number-theoretic interpretation of the problem whether the spectrum of an automorphism is discrete arises. In particular, the known character of the asymptotic behavior of the function $s_2(n)$ allows one to immediately see the nondiscreteness of the spectrum of the Morse automorphism and to give a new formulation of the discreteness problem in the case of the Pascal automorphism.
@article{ZNSL_2012_403_a5,
     author = {A. A. Lodkin and I. E. Manaev and A. R. Minabutdinov},
     title = {A realization of the {Pascal} automorphism in the concatenation graph, and the function~$s_2(n)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--102},
     year = {2012},
     volume = {403},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/}
}
TY  - JOUR
AU  - A. A. Lodkin
AU  - I. E. Manaev
AU  - A. R. Minabutdinov
TI  - A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 95
EP  - 102
VL  - 403
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/
LA  - ru
ID  - ZNSL_2012_403_a5
ER  - 
%0 Journal Article
%A A. A. Lodkin
%A I. E. Manaev
%A A. R. Minabutdinov
%T A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 95-102
%V 403
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/
%G ru
%F ZNSL_2012_403_a5
A. A. Lodkin; I. E. Manaev; A. R. Minabutdinov. A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 95-102. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/

[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl

[2] X. Mela, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25 (2005), 227–256 | DOI | MR | Zbl

[3] P. Flajolet, P. Grabner, “Mellin transforms and asymptotics: digital sums”, Theoret. Comput. Sci., 123 (1994), 291–314 | DOI | MR | Zbl

[4] M. Drmota, M. Skalba, “Sign-changes of the Thue–Morse fractal function and Dirichlet $L$-series”, Manuscripta Math., 86 (1995), 519–541 | DOI | MR | Zbl

[5] M. Drmota, M. Skalba, “Rarified sums of the Thue–Morse sequence”, Trans. Amer. Math. Soc., 352 (1999), 609–642 | DOI | MR

[6] A. Vershik, F. Petrov, P. Zatitskiy, Geometry and dynamics of admissible metrics in measure spaces, 2012, arXiv: 1205.1174v2

[7] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel Math. J., 100 (1997), 180–207 | DOI | MR

[8] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Zap. nauchn. semin. POMI, 378, 2010, 58–72 | MR

[9] A. M. Vershik, “Orbit theory, locally finite permutations and Morse arithmetic”, Dynamical Numbers: Interplay Between Dynamical Systems and Number Theory, Contemp. Math., 532, 2010, 115–136 | DOI | MR | Zbl