A realization of the Pascal automorphism in the concatenation graph, and the function~$s_2(n)$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 95-102
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of concatenation dynamical systems is introduced. Various automorphisms, including the Morse and Pascal automorphisms, can be regarded as automorphisms of this class. In this realization, a natural number-theoretic interpretation of the problem whether the spectrum of an automorphism is discrete arises. In particular, the known character of the asymptotic behavior of the function $s_2(n)$ allows one to immediately see the nondiscreteness of the spectrum of the Morse automorphism and to give a new formulation of the discreteness problem in the case of the Pascal automorphism.
@article{ZNSL_2012_403_a5,
author = {A. A. Lodkin and I. E. Manaev and A. R. Minabutdinov},
title = {A realization of the {Pascal} automorphism in the concatenation graph, and the function~$s_2(n)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--102},
publisher = {mathdoc},
volume = {403},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/}
}
TY - JOUR AU - A. A. Lodkin AU - I. E. Manaev AU - A. R. Minabutdinov TI - A realization of the Pascal automorphism in the concatenation graph, and the function~$s_2(n)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 95 EP - 102 VL - 403 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/ LA - ru ID - ZNSL_2012_403_a5 ER -
%0 Journal Article %A A. A. Lodkin %A I. E. Manaev %A A. R. Minabutdinov %T A realization of the Pascal automorphism in the concatenation graph, and the function~$s_2(n)$ %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 95-102 %V 403 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/ %G ru %F ZNSL_2012_403_a5
A. A. Lodkin; I. E. Manaev; A. R. Minabutdinov. A realization of the Pascal automorphism in the concatenation graph, and the function~$s_2(n)$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 95-102. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/