@article{ZNSL_2012_403_a5,
author = {A. A. Lodkin and I. E. Manaev and A. R. Minabutdinov},
title = {A realization of the {Pascal} automorphism in the concatenation graph, and the function~$s_2(n)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--102},
year = {2012},
volume = {403},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/}
}
TY - JOUR AU - A. A. Lodkin AU - I. E. Manaev AU - A. R. Minabutdinov TI - A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 95 EP - 102 VL - 403 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/ LA - ru ID - ZNSL_2012_403_a5 ER -
%0 Journal Article %A A. A. Lodkin %A I. E. Manaev %A A. R. Minabutdinov %T A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$ %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 95-102 %V 403 %U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/ %G ru %F ZNSL_2012_403_a5
A. A. Lodkin; I. E. Manaev; A. R. Minabutdinov. A realization of the Pascal automorphism in the concatenation graph, and the function $s_2(n)$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 95-102. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a5/
[1] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, DAN SSSR, 259:3 (1981), 526–529 | MR | Zbl
[2] X. Mela, K. Petersen, “Dynamical properties of the Pascal adic transformation”, Ergodic Theory Dynam. Systems, 25 (2005), 227–256 | DOI | MR | Zbl
[3] P. Flajolet, P. Grabner, “Mellin transforms and asymptotics: digital sums”, Theoret. Comput. Sci., 123 (1994), 291–314 | DOI | MR | Zbl
[4] M. Drmota, M. Skalba, “Sign-changes of the Thue–Morse fractal function and Dirichlet $L$-series”, Manuscripta Math., 86 (1995), 519–541 | DOI | MR | Zbl
[5] M. Drmota, M. Skalba, “Rarified sums of the Thue–Morse sequence”, Trans. Amer. Math. Soc., 352 (1999), 609–642 | DOI | MR
[6] A. Vershik, F. Petrov, P. Zatitskiy, Geometry and dynamics of admissible metrics in measure spaces, 2012, arXiv: 1205.1174v2
[7] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel Math. J., 100 (1997), 180–207 | DOI | MR
[8] A. A. Lodkin, I. E. Manaev, A. R. Minabutdinov, “Asimptotika masshtabirovannoi entropii avtomorfizma Paskalya”, Zap. nauchn. semin. POMI, 378, 2010, 58–72 | MR
[9] A. M. Vershik, “Orbit theory, locally finite permutations and Morse arithmetic”, Dynamical Numbers: Interplay Between Dynamical Systems and Number Theory, Contemp. Math., 532, 2010, 115–136 | DOI | MR | Zbl