Equilibrium Kawasaki dynamics and determinantal point processes
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 81-94
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mu$ be a point process on a countable discrete space $\mathfrak X$. Under the assumption that $\mu$ is quasi-invariant with respect to any finitary permutation of $\mathfrak X$, we describe a general scheme for constructing an equilibrium Kawasaki dynamics for which $\mu$ is a symmetrizing (and hence invariant) measure. We also exhibit a two-parameter family of point processes $\mu$ possessing the needed quasi-invariance property. Each process of this family is determinantal, and its correlation kernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$.
			
            
            
            
          
        
      @article{ZNSL_2012_403_a4,
     author = {E. Lytvynov and G. Olshanski},
     title = {Equilibrium {Kawasaki} dynamics and determinantal point processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {403},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a4/}
}
                      
                      
                    E. Lytvynov; G. Olshanski. Equilibrium Kawasaki dynamics and determinantal point processes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 81-94. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a4/