Equilibrium Kawasaki dynamics and determinantal point processes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 81-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mu$ be a point process on a countable discrete space $\mathfrak X$. Under the assumption that $\mu$ is quasi-invariant with respect to any finitary permutation of $\mathfrak X$, we describe a general scheme for constructing an equilibrium Kawasaki dynamics for which $\mu$ is a symmetrizing (and hence invariant) measure. We also exhibit a two-parameter family of point processes $\mu$ possessing the needed quasi-invariance property. Each process of this family is determinantal, and its correlation kernel is the kernel of a projection operator in $\ell^2(\mathfrak X)$.
@article{ZNSL_2012_403_a4,
     author = {E. Lytvynov and G. Olshanski},
     title = {Equilibrium {Kawasaki} dynamics and determinantal point processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--94},
     year = {2012},
     volume = {403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a4/}
}
TY  - JOUR
AU  - E. Lytvynov
AU  - G. Olshanski
TI  - Equilibrium Kawasaki dynamics and determinantal point processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 81
EP  - 94
VL  - 403
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a4/
LA  - en
ID  - ZNSL_2012_403_a4
ER  - 
%0 Journal Article
%A E. Lytvynov
%A G. Olshanski
%T Equilibrium Kawasaki dynamics and determinantal point processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 81-94
%V 403
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a4/
%G en
%F ZNSL_2012_403_a4
E. Lytvynov; G. Olshanski. Equilibrium Kawasaki dynamics and determinantal point processes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 81-94. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a4/

[1] A. Borodin, “Determinantal point processes”, The Oxford Handbook on Random Matrix Theory, eds. G. Akemann, J. Baik, P. Di Francesco, Oxford Univ. Press, Oxford, 2011, Chap. 11, 231–249, arXiv: 0911.1153 | MR

[2] A. Borodin, G. Olshanski, “Distributions on partitions, point processes and the hypergeometric kernel”, Comm. Math. Phys., 211 (2000), 335–358 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, “Random partitions and the gamma kernel”, Adv. Math., 194 (2005), 141–202 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135 (2006), 84–152 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Meixner polynomials and random partitions”, Moscow Math. J., 6:4 (2006), 629–655 | MR | Zbl

[6] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[7] H.-O. Georgii, H. J. Yoo, “Conditional intensity and Gibbsianness of determinantal point processes”, J. Stat. Phys., 118 (2005), 55–84 | DOI | MR | Zbl

[8] S. Kakutani, “On equivalence of infinite product measures”, Ann. Math., 49 (1948), 214–224 | DOI | MR | Zbl

[9] Y. G. Kondratiev, E. Lytvynov, M. Röckner, “Equilibrium Kawasaki dynamics of continuous particle systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10 (2007), 185–210 | DOI | MR

[10] A. Lenard, “Correlation functions and the uniqueness of the state in classical statistical mechanics”, Comm. Math. Phys., 30 (1973), 35–44 | DOI | MR

[11] E. Lytvynov, N. Ohlerich, “A note on equilibrium Glauber and Kawasaki dynamics for fermion point processes”, Methods Funct. Anal. Topology, 14 (2008), 67–80 | MR | Zbl

[12] K. Matthes, W. Warmuth, J. Mecke, “Bemerkungen zu einer Arbeit von Nguyen Xuan Xanh und Hans Zessin”, Math. Nachr., 88 (1979), 117–127 | DOI | MR | Zbl

[13] G. Olshanski, “Difference operators and determinantal point processes”, Funct. Anal. Appl., 42:4 (2008), 317–329 | DOI | MR | Zbl

[14] G. Olshanski, “The quasi-invariance property for the Gamma kernel determinantal measure”, Adv. Math., 226 (2011), 2305–2350 | DOI | MR | Zbl

[15] T. Shirai, H. J. Yoo, “Glauber dynamics for fermion point processes”, Nagoya Math. J., 168 (2002), 139–166 | MR | Zbl

[16] A. Soshnikov, “Determinantal random point fields”, Russian Math. Surveys, 55:5 (2000), 923–975 | DOI | MR | Zbl

[17] H. J. Yoo, “Dirichlet forms and diffusion processes for fermion random point fields”, J. Funct. Anal., 219 (2005), 143–160 | DOI | MR | Zbl