Covers counting via Feynman calculus
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 58-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. In this paper we present a tool for counting the number of principal $G$-bundles over a surface. As an application, we express (nonstandard) generating functions for the double Hurwitz numbers as integrals over commutative Frobenius algebras associated with symmetric groups.
@article{ZNSL_2012_403_a3,
     author = {M. Karev},
     title = {Covers counting via {Feynman} calculus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--80},
     publisher = {mathdoc},
     volume = {403},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/}
}
TY  - JOUR
AU  - M. Karev
TI  - Covers counting via Feynman calculus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 58
EP  - 80
VL  - 403
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/
LA  - en
ID  - ZNSL_2012_403_a3
ER  - 
%0 Journal Article
%A M. Karev
%T Covers counting via Feynman calculus
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 58-80
%V 403
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/
%G en
%F ZNSL_2012_403_a3
M. Karev. Covers counting via Feynman calculus. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 58-80. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/