Covers counting via Feynman calculus
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 58-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a finite group. In this paper we present a tool for counting the number of principal $G$-bundles over a surface. As an application, we express (nonstandard) generating functions for the double Hurwitz numbers as integrals over commutative Frobenius algebras associated with symmetric groups.
@article{ZNSL_2012_403_a3,
     author = {M. Karev},
     title = {Covers counting via {Feynman} calculus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--80},
     year = {2012},
     volume = {403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/}
}
TY  - JOUR
AU  - M. Karev
TI  - Covers counting via Feynman calculus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 58
EP  - 80
VL  - 403
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/
LA  - en
ID  - ZNSL_2012_403_a3
ER  - 
%0 Journal Article
%A M. Karev
%T Covers counting via Feynman calculus
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 58-80
%V 403
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/
%G en
%F ZNSL_2012_403_a3
M. Karev. Covers counting via Feynman calculus. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 58-80. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a3/

[1] B. Bertrand, E. Brugall, G. Mikhalkin, “Open tropical Hurwitz numbers”, Rend. Semin. Mat. Univ. Padova, 125 (2011), 157–171 | DOI | MR | Zbl

[2] R. Cavalieri, P. Johnson, H. Markwig, “Tropical Hurwitz numbers”, J. Algebraic Combin., 32 (2010), 241–265 | DOI | MR | Zbl

[3] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The Moduli Spaces of Curves, eds. C. Faber, R. Dijkgraaf, G. van der Geer, Birkhaäuser Boston, Boston, 1995, 149–163 | DOI | MR | Zbl

[4] T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein, “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327 | DOI | MR | Zbl

[5] P. Etingof, Mathematical ideas and notions of quantum field theory, Lecture Notes, 2002 available at http://math.mit.edu/~etingof

[6] P. Johnson, Double Hurwitz numbers via the infinite wedge, arXiv: 1008.3266

[7] I. Goulden, D. M. Jackson, R. Vakil, “Towards the geometry of double Hurwitz numbers”, Adv. Math., 198 (2005), 43–92 | DOI | MR | Zbl

[8] A. Hatcher, “On triangulation of surfaces”, Topology Appl., 40 (1991), 189–194 | DOI | MR | Zbl

[9] S. Lando, A. Zvonkin, Graphs on Surfaces and Their Applications, With an Appendix by Don B. Zagier, Springer-Verlag, Berlin, 2004 | MR | Zbl

[10] M. Mulase, J. T. Yu, “Noncommutative matrix integrals and representation varieties of surface groups in a finite group”, Ann. Inst. Fourier (Grenoble), 55:6 (2005), 2161–2196 | DOI | MR | Zbl

[11] A. Okounkov, “Toda equations for Hurwitz numbers”, Math. Res. Lett., 7:4 (2000), 447–453 | DOI | MR | Zbl