@article{ZNSL_2012_403_a2,
author = {A. M. Vershik},
title = {On classification of measurable functions of several variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--57},
year = {2012},
volume = {403},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a2/}
}
A. M. Vershik. On classification of measurable functions of several variables. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 35-57. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a2/
[1] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. anal. i pril., 36:2 (2002), 12–27 | DOI | MR | Zbl
[2] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, Uspekhi mat. nauk, 12:2(74) (1957), 169–174 | MR | Zbl
[3] M. Gromov, Metric Structure for Riemannian and non-Riemannian Spaces, Birkhäuser, 2001 | MR
[4] A. Vershik, “Sluchainye metricheskie prostranstva i universalnost”, Uspekhi mat. nauk, 59:2 (2004), 65–104 | DOI | MR | Zbl
[5] A. Vershik, U. Haboeck, “Compactness of the congruence group of measurable fuctions in several variables”, Zap. Nauchn. Semin. POMI, 334, 2005, 57–67 | MR
[6] A. Vershik, U. Haboeck, Canonical model of the measurable function of two variables with given matrix distributions, Manuscript, Vienna, 2005
[7] A. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. Akad. nauk, 218:4 (1974), 749–752 | Zbl