On classification of measurable functions of several variables
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 35-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We define a normal form (called the canonical image) of an arbitrary measurable function of several variables with respect to a natural group of transformations, describe a new complete system of its invariants (the system of joint distributions), and relate these notions to matrix distributions, i.e., another invariant of measurable functions, which was found earlier and is a random matrix.
@article{ZNSL_2012_403_a2,
     author = {A. M. Vershik},
     title = {On classification of measurable functions of several variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--57},
     year = {2012},
     volume = {403},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - On classification of measurable functions of several variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 35
EP  - 57
VL  - 403
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a2/
LA  - ru
ID  - ZNSL_2012_403_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%T On classification of measurable functions of several variables
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 35-57
%V 403
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a2/
%G ru
%F ZNSL_2012_403_a2
A. M. Vershik. On classification of measurable functions of several variables. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 35-57. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a2/

[1] A. M. Vershik, “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. anal. i pril., 36:2 (2002), 12–27 | DOI | MR | Zbl

[2] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, Uspekhi mat. nauk, 12:2(74) (1957), 169–174 | MR | Zbl

[3] M. Gromov, Metric Structure for Riemannian and non-Riemannian Spaces, Birkhäuser, 2001 | MR

[4] A. Vershik, “Sluchainye metricheskie prostranstva i universalnost”, Uspekhi mat. nauk, 59:2 (2004), 65–104 | DOI | MR | Zbl

[5] A. Vershik, U. Haboeck, “Compactness of the congruence group of measurable fuctions in several variables”, Zap. Nauchn. Semin. POMI, 334, 2005, 57–67 | MR

[6] A. Vershik, U. Haboeck, Canonical model of the measurable function of two variables with given matrix distributions, Manuscript, Vienna, 2005

[7] A. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, Dokl. Akad. nauk, 218:4 (1974), 749–752 | Zbl