An effective version of the first Bertini theorem in nonzero characteristic and its applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 172-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest an effective algorithm for the first Bertini theorem in nonzero characteristic of the ground field. This allows us to improve the double-exponential lower bound for the degree of any system of generators of a polynomial ideal over a finite ground field.
@article{ZNSL_2012_403_a11,
author = {A. L. Chistov},
title = {An effective version of the first {Bertini} theorem in nonzero characteristic and its applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--196},
publisher = {mathdoc},
volume = {403},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/}
}
TY - JOUR AU - A. L. Chistov TI - An effective version of the first Bertini theorem in nonzero characteristic and its applications JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 172 EP - 196 VL - 403 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/ LA - ru ID - ZNSL_2012_403_a11 ER -
A. L. Chistov. An effective version of the first Bertini theorem in nonzero characteristic and its applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 172-196. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/