An effective version of the first Bertini theorem in nonzero characteristic and its applications
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 172-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an effective algorithm for the first Bertini theorem in nonzero characteristic of the ground field. This allows us to improve the double-exponential lower bound for the degree of any system of generators of a polynomial ideal over a finite ground field.
@article{ZNSL_2012_403_a11,
     author = {A. L. Chistov},
     title = {An effective version of the first {Bertini} theorem in nonzero characteristic and its applications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--196},
     publisher = {mathdoc},
     volume = {403},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - An effective version of the first Bertini theorem in nonzero characteristic and its applications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 172
EP  - 196
VL  - 403
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/
LA  - ru
ID  - ZNSL_2012_403_a11
ER  - 
%0 Journal Article
%A A. L. Chistov
%T An effective version of the first Bertini theorem in nonzero characteristic and its applications
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 172-196
%V 403
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/
%G ru
%F ZNSL_2012_403_a11
A. L. Chistov. An effective version of the first Bertini theorem in nonzero characteristic and its applications. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 172-196. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a11/