A central limit theorem for Plancherel representations of the infinite-dimensional unitary group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 19-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the asymptotics of traces of (noncommutative) monomials formed by the images of certain elements of the universal enveloping algebra of the infinite-dimensional unitary group in its Plancherel representations. We prove that they converge to (commutative) moments of a Gaussian process which can be viewed as a collection of simply yet nontrivially correlated two-dimensional Gaussian free fields. The limiting process has previously arisen via the global scaling limit of spectra for submatrices of Wigner Hermitian random matrices. This note is an announcement, proofs will appear elsewhere.
@article{ZNSL_2012_403_a1,
     author = {A. M. Borodin and A. I. Bufetov},
     title = {A central limit theorem for {Plancherel} representations of the infinite-dimensional unitary group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--34},
     year = {2012},
     volume = {403},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/}
}
TY  - JOUR
AU  - A. M. Borodin
AU  - A. I. Bufetov
TI  - A central limit theorem for Plancherel representations of the infinite-dimensional unitary group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 19
EP  - 34
VL  - 403
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/
LA  - ru
ID  - ZNSL_2012_403_a1
ER  - 
%0 Journal Article
%A A. M. Borodin
%A A. I. Bufetov
%T A central limit theorem for Plancherel representations of the infinite-dimensional unitary group
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 19-34
%V 403
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/
%G ru
%F ZNSL_2012_403_a1
A. M. Borodin; A. I. Bufetov. A central limit theorem for Plancherel representations of the infinite-dimensional unitary group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 19-34. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/

[1] P. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Internat. Math. Res. Notices, 2001:4 (2001), 179–192 | DOI | MR | Zbl

[2] A. Borodin, CLT for spectra of submatrices of Wigner random matrices, arXiv: 1010.0898

[3] A. Borodin, P. L. Ferrari, Anisotropic growth of random surfaces in $2+1$ dimensions 0804.3035 | MR

[4] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 73–94, arXiv: math/0409333 | MR | Zbl

[5] A. Borodin, G. Olshanski, “Asymptotics of Plancherel-type random partitions”, J. Algebra, 313:1 (2007), 40–60, arXiv: math/0610240 | DOI | MR | Zbl

[6] P. Cartier, “Introduction à l'étude des mouvements browniens à plusieurs paramètres”, Lect. Notes Math., 191, 1971, 58–75 | DOI | MR

[7] P. L. Méliot, Kerov's central limit theorem for Schur–Weyl measures of parameter 1/2, arXiv: 1009.4034

[8] S. Mkrtchyan, Entropy of Schur–Weyl measures, arXiv: 1107.1541 | MR

[9] A. Okounkov, “The uses of random partitions”, XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, 379–403, arXiv: math-ph/0309015 | MR | Zbl

[10] A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Internat. Math. Res. Notices, 1998, no. 13, 641–682, arXiv: q-alg/9709011 | DOI | MR | Zbl

[11] A. Okounkov, G. Olshanski, “Shifted Schur functions”, Algebra Analiz, 9:2 (1997), 73–146, arXiv: q-alg/9605042 | MR | Zbl

[12] G. Olshanski, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representations of Lie Groups and Related Topics, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach, New York, 1990, 269–463 | MR

[13] G. Olshanski, “Random permutations and related topics”, The Oxford Handbook of Random Matrix Theory, eds. G. Akemann, J. Baik, P. Di Francesco, Oxford Univ. Press, Oxford, 2011, Chap. 25, arXiv: 1104.1266 | MR

[14] S. Sheffield, “Gaussian free fields for mathematicians”, Probab. Theory Related Fields, 139 (2007), 521–541, arXiv: math/0312099 | DOI | MR | Zbl