@article{ZNSL_2012_403_a1,
author = {A. M. Borodin and A. I. Bufetov},
title = {A central limit theorem for {Plancherel} representations of the infinite-dimensional unitary group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--34},
year = {2012},
volume = {403},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/}
}
TY - JOUR AU - A. M. Borodin AU - A. I. Bufetov TI - A central limit theorem for Plancherel representations of the infinite-dimensional unitary group JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 19 EP - 34 VL - 403 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/ LA - ru ID - ZNSL_2012_403_a1 ER -
A. M. Borodin; A. I. Bufetov. A central limit theorem for Plancherel representations of the infinite-dimensional unitary group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 19-34. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a1/
[1] P. Biane, “Approximate factorization and concentration for characters of symmetric groups”, Internat. Math. Res. Notices, 2001:4 (2001), 179–192 | DOI | MR | Zbl
[2] A. Borodin, CLT for spectra of submatrices of Wigner random matrices, arXiv: 1010.0898
[3] A. Borodin, P. L. Ferrari, Anisotropic growth of random surfaces in $2+1$ dimensions 0804.3035 | MR
[4] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, 73–94, arXiv: math/0409333 | MR | Zbl
[5] A. Borodin, G. Olshanski, “Asymptotics of Plancherel-type random partitions”, J. Algebra, 313:1 (2007), 40–60, arXiv: math/0610240 | DOI | MR | Zbl
[6] P. Cartier, “Introduction à l'étude des mouvements browniens à plusieurs paramètres”, Lect. Notes Math., 191, 1971, 58–75 | DOI | MR
[7] P. L. Méliot, Kerov's central limit theorem for Schur–Weyl measures of parameter 1/2, arXiv: 1009.4034
[8] S. Mkrtchyan, Entropy of Schur–Weyl measures, arXiv: 1107.1541 | MR
[9] A. Okounkov, “The uses of random partitions”, XIVth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, 379–403, arXiv: math-ph/0309015 | MR | Zbl
[10] A. Okounkov, G. Olshanski, “Asymptotics of Jack polynomials as the number of variables goes to infinity”, Internat. Math. Res. Notices, 1998, no. 13, 641–682, arXiv: q-alg/9709011 | DOI | MR | Zbl
[11] A. Okounkov, G. Olshanski, “Shifted Schur functions”, Algebra Analiz, 9:2 (1997), 73–146, arXiv: q-alg/9605042 | MR | Zbl
[12] G. Olshanski, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representations of Lie Groups and Related Topics, eds. A. M. Vershik, D. P. Zhelobenko, Gordon and Breach, New York, 1990, 269–463 | MR
[13] G. Olshanski, “Random permutations and related topics”, The Oxford Handbook of Random Matrix Theory, eds. G. Akemann, J. Baik, P. Di Francesco, Oxford Univ. Press, Oxford, 2011, Chap. 25, arXiv: 1104.1266 | MR
[14] S. Sheffield, “Gaussian free fields for mathematicians”, Probab. Theory Related Fields, 139 (2007), 521–541, arXiv: math/0312099 | DOI | MR | Zbl