@article{ZNSL_2012_403_a0,
author = {N. M. Bogoliubov and A. G. Pronko and J. Timonen},
title = {Multiple-grain dissipative sandpiles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--18},
year = {2012},
volume = {403},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a0/}
}
N. M. Bogoliubov; A. G. Pronko; J. Timonen. Multiple-grain dissipative sandpiles. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXI, Tome 403 (2012), pp. 5-18. http://geodesic.mathdoc.fr/item/ZNSL_2012_403_a0/
[1] D. Dhar, R. Ramaswamy, “Exactly solved model of self-organized critical phenomena”, Phys. Rev. Lett., 63 (1989), 1659–1662 | DOI | MR
[2] D. Dhar, “Self-organized critical state of sandpile automaton models”, Phys. Rev. Lett., 64 (1990), 1613–1616 | DOI | MR | Zbl
[3] D. Dhar, P. Pradhan, “Probability distribution of residence times of grains in sand-pile models”, J. Stat. Mech. Theory Exp., 2004 (2004), P05002 | DOI | MR | Zbl
[4] S. S. Manna, “Two-state model of self-organized criticality”, J. Phys. A, 24 (1991), L363–L370 | DOI | MR
[5] R. Karmakar, S. S. Manna, A. L. Stella, “Precise toppling balance, quenched disorder, and universality for sandpiles”, Phys. Rev. Lett., 94 (2005), 088002 | DOI
[6] T. Tsuchiya, M. Katori, “Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model”, Phys. Rev. E, 61 (2000), 1183–1188 | DOI | MR
[7] M. Stapleton, K. Christensen, “Universality class of one-dimensional directed sandpile models”, Phys. Rev. E, 72 (2005), 066103 | DOI
[8] P. Bak, C. Tang, K. Wiesenfeld, “Self-organized criticality”, Phys. Rev. A, 38 (1988), 364–374 | DOI | MR | Zbl
[9] M. Alava, Self-organized criticality as a phase transition, arXiv: cond-mat/0307688
[10] R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge Univ. Press, Cambridge, 1999 | MR
[11] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[12] A. M. Vershik, “Two lectures on the asymptotic representation theory and statistics of Young diagrams”, Asymptotic Combinatorics with Applications to Mathematical Physics, Lecture Notes Math., 1815, ed. A. M. Vershik, 2003, 161–182 | DOI | MR | Zbl
[13] M. E. Fisher, “Walks, walls, wetting, and melting”, J. Stat. Phys., 34 (1984), 667–729 | DOI | MR
[14] D. A. Huse, M. E. Fisher, “Commensurate melting, domain walls, and dislocations”, Phys. Rev. B, 29 (1984), 239–270 | DOI | MR
[15] P. J. Forrester, S. N. Majumdar, G. Schehr, “Non-intersecting Brownian walkers and Yang–Mills theory on the sphere”, Nucl. Phys. B, 844 (2011), 500–526 | DOI | MR | Zbl
[16] P. J. Forrester, “Exact results for vicious walker models of domain walls”, J. Phys. A, 24 (1991), 203–218 | DOI | MR | Zbl
[17] P. J. Forrester, “Random walks and random permutations”, J. Phys. A, 34 (2001), L417–L424 | DOI | MR
[18] M. Katori, H. Tanemura, “Scaling limit of vicious walks and two-matrix model”, Phys. Rev. E, 66 (2002), 011105 | DOI
[19] M. Katori, H. Tanemura, T. Nagao, N. Komatsuda, “Vicious walks with a wall, noncolliding meanders, and chiral and Bogoliubov–de Gennes random matrices”, Phys. Rev. E, 68 (2003), 021112 | DOI
[20] G. Schehr, S. N. Majumdar, A. Comtet, J. Randon-Furling, “Exact distribution of the maximal height of $p$ vicious walkers”, Phys. Rev. Lett., 101 (2008), 150601 | DOI | MR | Zbl
[21] Y. Shilo, O. Biham, “Sandpile models and random walkers on finite lattices”, Phys. Rev. E, 67 (2003), 066102 | DOI
[22] C. Vanderzande, F. Daerden, “Dissipative {A}belian sandpiles and random walks”, Phys. Rev. E, 63 (2001), 030301 | DOI
[23] B. Tadic, U. Nowak, K. D. Usadel, R. Ramaswamy, S. Padlewski, “Scaling behavior in disordered sandpile automata”, Phys. Rev. A, 45 (1992), 8536–8545 | DOI
[24] J. Theiler, “Scaling behavior of a directed sandpile automata with random defects”, Phys. Rev. E, 47 (1993), 733–734 | DOI
[25] I. G. Macdonald, Symmetric Functions and {H}all polynomials, 2nd edition, The Clarendon Press, Oxford Univ. Press, New York, 1995 | MR | Zbl
[26] M. L. Mehta, Random Matrices, 3rd edition, Elsevier and Academic Press, Amsterdam, 2004 | MR | Zbl
[27] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux: II. With a wall”, J. Phys. A, 33 (2000), 8835–8866 | DOI | MR | Zbl