A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 91-107
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that the subsemimodule membership problem for finite rank free $\mathbb Z\times\mathbb Z$-modules is undecidable. Modifying the undecidability construction, we present a complete one-way function based on finite rank free $\mathbb Z\times\mathbb Z$-modules.
			
            
            
            
          
        
      @article{ZNSL_2012_402_a6,
     author = {S. I. Nikolenko and D. S. Tugaryov},
     title = {A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--107},
     publisher = {mathdoc},
     volume = {402},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/}
}
                      
                      
                    TY - JOUR AU - S. I. Nikolenko AU - D. S. Tugaryov TI - A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 91 EP - 107 VL - 402 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/ LA - ru ID - ZNSL_2012_402_a6 ER -
S. I. Nikolenko; D. S. Tugaryov. A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 91-107. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/