A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 91-107

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the subsemimodule membership problem for finite rank free $\mathbb Z\times\mathbb Z$-modules is undecidable. Modifying the undecidability construction, we present a complete one-way function based on finite rank free $\mathbb Z\times\mathbb Z$-modules.
@article{ZNSL_2012_402_a6,
     author = {S. I. Nikolenko and D. S. Tugaryov},
     title = {A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--107},
     publisher = {mathdoc},
     volume = {402},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/}
}
TY  - JOUR
AU  - S. I. Nikolenko
AU  - D. S. Tugaryov
TI  - A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 91
EP  - 107
VL  - 402
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/
LA  - ru
ID  - ZNSL_2012_402_a6
ER  - 
%0 Journal Article
%A S. I. Nikolenko
%A D. S. Tugaryov
%T A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 91-107
%V 402
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/
%G ru
%F ZNSL_2012_402_a6
S. I. Nikolenko; D. S. Tugaryov. A complete one-way function based on a~free finite rank $\mathbb Z\times\mathbb Z$-module. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 91-107. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a6/