Synchronizing random automata on $4$-letter alphabet
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 83-90

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the synchronization of a random automaton that is sampled uniformly at random from the set of all automata with $n$ states and $m$ letters. We show that for $m=4$ the probability that a random automaton is synchronizing is larger than a positive constant.
@article{ZNSL_2012_402_a5,
     author = {Yu. I. Zaks and E. S. Skvortsov},
     title = {Synchronizing random automata on $4$-letter alphabet},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {402},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a5/}
}
TY  - JOUR
AU  - Yu. I. Zaks
AU  - E. S. Skvortsov
TI  - Synchronizing random automata on $4$-letter alphabet
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 83
EP  - 90
VL  - 402
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a5/
LA  - ru
ID  - ZNSL_2012_402_a5
ER  - 
%0 Journal Article
%A Yu. I. Zaks
%A E. S. Skvortsov
%T Synchronizing random automata on $4$-letter alphabet
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 83-90
%V 402
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a5/
%G ru
%F ZNSL_2012_402_a5
Yu. I. Zaks; E. S. Skvortsov. Synchronizing random automata on $4$-letter alphabet. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 83-90. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a5/