@article{ZNSL_2012_402_a1,
author = {D. S. Ananichev and M. V. Volkov and V. V. Gusev},
title = {Primitive digraphs with large exponents and slowly synchronizing automata},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--39},
year = {2012},
volume = {402},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a1/}
}
TY - JOUR AU - D. S. Ananichev AU - M. V. Volkov AU - V. V. Gusev TI - Primitive digraphs with large exponents and slowly synchronizing automata JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 9 EP - 39 VL - 402 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a1/ LA - ru ID - ZNSL_2012_402_a1 ER -
D. S. Ananichev; M. V. Volkov; V. V. Gusev. Primitive digraphs with large exponents and slowly synchronizing automata. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part IV, Tome 402 (2012), pp. 9-39. http://geodesic.mathdoc.fr/item/ZNSL_2012_402_a1/
[1] V. Liskovets, “Chislo svyaznykh initsialnykh avtomatov”, Kibernetika, 1969, no. 3, 16–19 | Zbl
[2] V. N. Sachkov, V. E. Tarakanov, Kombinatorika neotritsatelnykh matrits, TVP, M., 2000 | MR | Zbl
[3] R. L. Adler, L. W. Goodwyn, B. Weiss, “Equivalence of topological Markov shifts”, Israel J. Math., 27 (1977), 49–63 | DOI | MR | Zbl
[4] M. Almeida, N. Moreira, R. Reis, “Enumeration and generation with a string automata representation”, Theor. Comput. Sci., 387 (2007), 93–102 | DOI | MR | Zbl
[5] D. S. Ananichev, V. V. Gusev, M. V. Volkov, “Slowly synchronizing automata and digraphs”, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 6281, 2010, 55–64 | DOI | MR
[6] D. S. Ananichev, M. V. Volkov, Yu. I. Zaks, “Synchronizing automata with a letter of deficiency 2”, Theor. Comput. Sci., 376 (2007), 30–41 | DOI | MR | Zbl
[7] M. Berlinkov, “Approximating the minimum length of synchronizing words is hard”, Computer Science in Russia, Lect. Notes Comput. Sci., 6072, 2010, 37–47 | DOI | MR | Zbl
[8] M. Berlinkov, “On a conjecture by Carpi and D'Alessandro”, Int. J. Found. Comp. Sci., 22 (2011), 1565–1576 | DOI | MR | Zbl
[9] R. Brualdi, H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991 | MR | Zbl
[10] A. Carpi, F. D'Alessandro, “On the hybrid Černý-Road Coloring Problem and Hamiltonian paths”, Developments in Language Theory, Lect. Notes Comput. Sci., 6224, 2010, 124–135 | DOI | MR | Zbl
[11] J. Černý, “Poznámka k homogénnym eksperimentom s konečnými automatami”, Matematicko-fyzikalny Časopis Slovensk. Akad. Vied, 14:3 (1964), 208–216 | MR | Zbl
[12] A. L. Dulmage, N. S. Mendelsohn, “The exponent of a primitive matrix”, Can. Math. Bull., 5 (1962), 241–244 | DOI | MR | Zbl
[13] A. L. Dulmage, N. S. Mendelsohn, “Gaps in the exponent set of primitive matrices”, Ill. J. Math., 8 (1964), 642–656 | MR | Zbl
[14] V. Gusev, “Lower bounds for the length of reset words in Eulerian automata”, Reachability Problems, Lect. Notes Comput. Sci., 6945, 2011, 180–190 | DOI | Zbl
[15] J. Kari, “A counter example to a conjecture concerning synchronizing words in finite automata”, Bull. European Assoc. Theor. Comput. Sci., 73 (2001), 146 | MR | Zbl
[16] J. Olschewski, M. Ummels, “The complexity of finding reset words in finite automata”, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 6281, 2010, 568–579 | DOI | MR | Zbl
[17] J.-E. Pin, “On two combinatorial problems arising from automata theory”, Ann. Discr. Math., 17 (1983), 535–548 | MR | Zbl
[18] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford University Press, 2005 | MR | Zbl
[19] S. Sandberg, “Homing and synchronizing sequences”, Model-Based Testing of Reactive Systems, Lect. Notes Comput. Sci., 3472, 2005, 5–33 | DOI
[20] E. Skvortsov, E. Tipikin, “Experimental study of the shortest reset word of random automata”, Implementation and Application of Automata, Lect. Notes Comput. Sci., 6807, 2011, 290–298 | DOI | MR | Zbl
[21] B. Steinberg, “The Černý conjecture for one-cluster automata with prime length cycle”, Theor. Comput. Sci., 412 (2011), 5487–5491 | DOI | MR | Zbl
[22] A. N. Trahtman, “An efficient algorithm finds noticeable trends and examples concerning the Černý conjecture”, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 4162, 2006, 789–800 | DOI | MR | Zbl
[23] A. N. Trahtman, “Notable trends concerning the synchronization of graphs and automata”, Electr. Notes Discr. Math., 25 (2006), 173–175 | DOI | MR | Zbl
[24] A. N. Trahtman, “The road coloring problem”, Israel J. Math., 172 (2009), 51–60 | DOI | MR | Zbl
[25] A. N. Trahtman, “Modifying the upper bound on the length of minimal synchronizing word”, Fundamentals of Computation Theory, Lect. Notes Comput. Sci., 6914, 2011, 173–180 | DOI | MR | Zbl
[26] M. V. Volkov, “Synchronizing automata and the Černý conjecture”, Language and Automata Theory and Applications, Lect. Notes Comput. Sci., 5196, 2008, 11–27 | DOI | MR | Zbl
[27] M. V. Volkov, “Synchronizing automata preserving a chain of partial orders”, Theor. Comput. Sci., 410 (2009), 3513–3519 | DOI | MR | Zbl
[28] H. Wielandt, “Unzerlegbare, nicht negative Matrizen”, Math. Z., 52 (1950), 642–648 | DOI | MR | Zbl