Cauchy--Leray--Fantappi\`e formula for linearly convex domains
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An important tool in analysis of functions of one complex variable is the Cauchy formula. However, in the case of several complex variables there is no unique and convenient formula of this sort. One can use the Szego projection $S$, but the kernel of the operator $S$ has usually no explicit expression. Another choice is the Cauchy–Leray–Fantappiè formula, which has rather explicit kernel for large classes of domains. In this paper we prove the boundedness properties of the Cauchy–Leray–Fantappiè integral for linearly convex domains, as an operator on $L^p$ and $BMO$.
			
            
            
            
          
        
      @article{ZNSL_2012_401_a8,
     author = {A. S. Rotkevich},
     title = {Cauchy--Leray--Fantappi\`e formula for linearly convex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--188},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/}
}
                      
                      
                    A. S. Rotkevich. Cauchy--Leray--Fantappi\`e formula for linearly convex domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/