Cauchy–Leray–Fantappiè formula for linearly convex domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An important tool in analysis of functions of one complex variable is the Cauchy formula. However, in the case of several complex variables there is no unique and convenient formula of this sort. One can use the Szego projection $S$, but the kernel of the operator $S$ has usually no explicit expression. Another choice is the Cauchy–Leray–Fantappiè formula, which has rather explicit kernel for large classes of domains. In this paper we prove the boundedness properties of the Cauchy–Leray–Fantappiè integral for linearly convex domains, as an operator on $L^p$ and $BMO$.
@article{ZNSL_2012_401_a8,
     author = {A. S. Rotkevich},
     title = {Cauchy{\textendash}Leray{\textendash}Fantappi\`e formula for linearly convex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--188},
     year = {2012},
     volume = {401},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/}
}
TY  - JOUR
AU  - A. S. Rotkevich
TI  - Cauchy–Leray–Fantappiè formula for linearly convex domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 172
EP  - 188
VL  - 401
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/
LA  - ru
ID  - ZNSL_2012_401_a8
ER  - 
%0 Journal Article
%A A. S. Rotkevich
%T Cauchy–Leray–Fantappiè formula for linearly convex domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 172-188
%V 401
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/
%G ru
%F ZNSL_2012_401_a8
A. S. Rotkevich. Cauchy–Leray–Fantappiè formula for linearly convex domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/

[1] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v kompleksnom analize, Nauka, 1979 | MR

[2] A. Rotkevich, “Formula Aizenberga v nevypuklykh oblastyakh i nekotorye eë prilozheniya”, Zap. nauchn. sem. POMI, 389, 2011, 206–231 | MR

[3] J. D. McNeal, “The Bergman projection as a singular integral operator”, J. Geom. Anal., 4:1 (1994), 91–103 | DOI | MR | Zbl

[4] K. Adachi, Several complex variables and integral formulas, World Scientific, 2007 | MR

[5] G. David, J. L. Journe, S. Semmes, “Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation”, Rev. Mat. Iber., 1:4 (1985), 1–56 | DOI | MR

[6] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta mathematica, 129:1 (1972), 137–193 | DOI | MR | Zbl

[7] T. Hansson, “On Hardy spaces in complex ellipsoids”, Annales de l'institut Fourier, 49:5 (1999), 1477–1501 | DOI | MR | Zbl

[8] N. Kerzman, E. M. Stein, “The Szego kernel in terms of Cauchy–Fantappie kernels”, Duke Math. J., 45:2 (1978), 197–224 | DOI | MR | Zbl

[9] A. Korànyi, S. Vàgi, “Singular integrals on homogeneous spaces and some problems of classical analysis”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Sér. 3, 25:4 (1971), 575–648 | MR

[10] L. Lanzani, E. M. Stein, “Szegö and Bergman projections on non-smooth planar domains”, J. Geom. Anal., 14:1 (2004), 63–86 | DOI | MR | Zbl

[11] L. Lanzani, E. M. Stein, The Bergman projection in $L^p$ for domains with minimal smoothness, 2012, arXiv: 1201.4148v1 | MR

[12] M. Machedon, “Szego kernels on pseudoconvex domains with one degenerate eigenvalue”, Ann. Math. 2nd Ser., 128:3 (1988), 619–640 | DOI | MR | Zbl

[13] J. D. McNeal, E. M. Stein, “Mapping properties of the Bergman projection on convex domains of finite type”, Duke Math. J., 73:1 (1994), 177–199 | DOI | MR | Zbl

[14] J. D. McNeal, E. M. Stein, “The Szegö projection on convex domains”, Mathematische Zeitschrift, 224:4 (1997), 519–553 | DOI | MR | Zbl

[15] A. Nagel, J. P. Rosay, E. M. Stein, S. Wainger, “Estimates for the Bergman and Szego kernels in $C^2$”, Ann. Math., 129 (1989), 113–149 | DOI | MR | Zbl

[16] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren der mathematischen Wissenschaften, 241, Springer-Verlag, Berlin–New York, 1980, xiii+436 pp. | DOI | MR | Zbl

[17] E. L. Stout, “$H^p$-functions on strictly pseudoconvex domains”, Amer. J. Math., 98:3 (1976), 821–852 | DOI | MR | Zbl