Cauchy--Leray--Fantappi\`e formula for linearly convex domains
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188

Voir la notice de l'article provenant de la source Math-Net.Ru

An important tool in analysis of functions of one complex variable is the Cauchy formula. However, in the case of several complex variables there is no unique and convenient formula of this sort. One can use the Szego projection $S$, but the kernel of the operator $S$ has usually no explicit expression. Another choice is the Cauchy–Leray–Fantappiè formula, which has rather explicit kernel for large classes of domains. In this paper we prove the boundedness properties of the Cauchy–Leray–Fantappiè integral for linearly convex domains, as an operator on $L^p$ and $BMO$.
@article{ZNSL_2012_401_a8,
     author = {A. S. Rotkevich},
     title = {Cauchy--Leray--Fantappi\`e formula for linearly convex domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--188},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/}
}
TY  - JOUR
AU  - A. S. Rotkevich
TI  - Cauchy--Leray--Fantappi\`e formula for linearly convex domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 172
EP  - 188
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/
LA  - ru
ID  - ZNSL_2012_401_a8
ER  - 
%0 Journal Article
%A A. S. Rotkevich
%T Cauchy--Leray--Fantappi\`e formula for linearly convex domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 172-188
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/
%G ru
%F ZNSL_2012_401_a8
A. S. Rotkevich. Cauchy--Leray--Fantappi\`e formula for linearly convex domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/