@article{ZNSL_2012_401_a8,
author = {A. S. Rotkevich},
title = {Cauchy{\textendash}Leray{\textendash}Fantappi\`e formula for linearly convex domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--188},
year = {2012},
volume = {401},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/}
}
A. S. Rotkevich. Cauchy–Leray–Fantappiè formula for linearly convex domains. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 172-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a8/
[1] L. A. Aizenberg, A. P. Yuzhakov, Integralnye predstavleniya i vychety v kompleksnom analize, Nauka, 1979 | MR
[2] A. Rotkevich, “Formula Aizenberga v nevypuklykh oblastyakh i nekotorye eë prilozheniya”, Zap. nauchn. sem. POMI, 389, 2011, 206–231 | MR
[3] J. D. McNeal, “The Bergman projection as a singular integral operator”, J. Geom. Anal., 4:1 (1994), 91–103 | DOI | MR | Zbl
[4] K. Adachi, Several complex variables and integral formulas, World Scientific, 2007 | MR
[5] G. David, J. L. Journe, S. Semmes, “Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation”, Rev. Mat. Iber., 1:4 (1985), 1–56 | DOI | MR
[6] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta mathematica, 129:1 (1972), 137–193 | DOI | MR | Zbl
[7] T. Hansson, “On Hardy spaces in complex ellipsoids”, Annales de l'institut Fourier, 49:5 (1999), 1477–1501 | DOI | MR | Zbl
[8] N. Kerzman, E. M. Stein, “The Szego kernel in terms of Cauchy–Fantappie kernels”, Duke Math. J., 45:2 (1978), 197–224 | DOI | MR | Zbl
[9] A. Korànyi, S. Vàgi, “Singular integrals on homogeneous spaces and some problems of classical analysis”, Annali della Scuola Normale Superiore di Pisa – Classe di Scienze, Sér. 3, 25:4 (1971), 575–648 | MR
[10] L. Lanzani, E. M. Stein, “Szegö and Bergman projections on non-smooth planar domains”, J. Geom. Anal., 14:1 (2004), 63–86 | DOI | MR | Zbl
[11] L. Lanzani, E. M. Stein, The Bergman projection in $L^p$ for domains with minimal smoothness, 2012, arXiv: 1201.4148v1 | MR
[12] M. Machedon, “Szego kernels on pseudoconvex domains with one degenerate eigenvalue”, Ann. Math. 2nd Ser., 128:3 (1988), 619–640 | DOI | MR | Zbl
[13] J. D. McNeal, E. M. Stein, “Mapping properties of the Bergman projection on convex domains of finite type”, Duke Math. J., 73:1 (1994), 177–199 | DOI | MR | Zbl
[14] J. D. McNeal, E. M. Stein, “The Szegö projection on convex domains”, Mathematische Zeitschrift, 224:4 (1997), 519–553 | DOI | MR | Zbl
[15] A. Nagel, J. P. Rosay, E. M. Stein, S. Wainger, “Estimates for the Bergman and Szego kernels in $C^2$”, Ann. Math., 129 (1989), 113–149 | DOI | MR | Zbl
[16] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren der mathematischen Wissenschaften, 241, Springer-Verlag, Berlin–New York, 1980, xiii+436 pp. | DOI | MR | Zbl
[17] E. L. Stout, “$H^p$-functions on strictly pseudoconvex domains”, Amer. J. Math., 98:3 (1976), 821–852 | DOI | MR | Zbl