A criterion for approximability by harmonic functions in Lipschitz spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 144-171

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a compact subset of $\mathbb R^3$, $f$ be a function harmonic inside $X$, from Lipschitz space $C^\gamma(X)$, $0\gamma1$. A criterion for approximability of $f$ on $X$ in $C^\gamma(X)$ by functions harmonic on neighborhoods of $X$ is obtained in terms of Hausdorff content of order $1+\gamma$. The proof is completely constructive, and Vitushkin's scheme of singularities separation and approximation by parts is applied.
@article{ZNSL_2012_401_a7,
     author = {M. Ya. Mazalov},
     title = {A criterion for approximability by harmonic functions in {Lipschitz} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--171},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a7/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - A criterion for approximability by harmonic functions in Lipschitz spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 144
EP  - 171
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a7/
LA  - ru
ID  - ZNSL_2012_401_a7
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T A criterion for approximability by harmonic functions in Lipschitz spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 144-171
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a7/
%G ru
%F ZNSL_2012_401_a7
M. Ya. Mazalov. A criterion for approximability by harmonic functions in Lipschitz spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 144-171. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a7/