A criterion for approximability by harmonic functions in Lipschitz spaces
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 144-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be a compact subset of $\mathbb R^3$, $f$ be a function harmonic inside $X$, from Lipschitz space $C^\gamma(X)$, $0\gamma1$. A criterion for approximability of $f$ on $X$ in $C^\gamma(X)$ by functions harmonic on neighborhoods of $X$ is obtained in terms of Hausdorff content of order $1+\gamma$. The proof is completely constructive, and Vitushkin's scheme of singularities separation and approximation by parts is applied.
			
            
            
            
          
        
      @article{ZNSL_2012_401_a7,
     author = {M. Ya. Mazalov},
     title = {A criterion for approximability by harmonic functions in {Lipschitz} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--171},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a7/}
}
                      
                      
                    M. Ya. Mazalov. A criterion for approximability by harmonic functions in Lipschitz spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 144-171. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a7/