Symmetric orthogonal wavelets with dilation factor~$M=3$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 122-143

Voir la notice de l'article provenant de la source Math-Net.Ru

For the dilation factor $M=3$ and any given symmetric $3$-orthogonal refinable mask, we describe all symmetric $3$-orthogonal wavelet masks for which the corresponding wavelet systems form an orthonormal basis in $L_2(\mathbb R)$.
@article{ZNSL_2012_401_a6,
     author = {A. V. Krivoshein and M. A. Ogneva},
     title = {Symmetric orthogonal wavelets with dilation factor~$M=3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--143},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/}
}
TY  - JOUR
AU  - A. V. Krivoshein
AU  - M. A. Ogneva
TI  - Symmetric orthogonal wavelets with dilation factor~$M=3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 122
EP  - 143
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/
LA  - ru
ID  - ZNSL_2012_401_a6
ER  - 
%0 Journal Article
%A A. V. Krivoshein
%A M. A. Ogneva
%T Symmetric orthogonal wavelets with dilation factor~$M=3$
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 122-143
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/
%G ru
%F ZNSL_2012_401_a6
A. V. Krivoshein; M. A. Ogneva. Symmetric orthogonal wavelets with dilation factor~$M=3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 122-143. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/