Symmetric orthogonal wavelets with dilation factor $M=3$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 122-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the dilation factor $M=3$ and any given symmetric $3$-orthogonal refinable mask, we describe all symmetric $3$-orthogonal wavelet masks for which the corresponding wavelet systems form an orthonormal basis in $L_2(\mathbb R)$.
@article{ZNSL_2012_401_a6,
     author = {A. V. Krivoshein and M. A. Ogneva},
     title = {Symmetric orthogonal wavelets with dilation factor~$M=3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--143},
     year = {2012},
     volume = {401},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/}
}
TY  - JOUR
AU  - A. V. Krivoshein
AU  - M. A. Ogneva
TI  - Symmetric orthogonal wavelets with dilation factor $M=3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 122
EP  - 143
VL  - 401
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/
LA  - ru
ID  - ZNSL_2012_401_a6
ER  - 
%0 Journal Article
%A A. V. Krivoshein
%A M. A. Ogneva
%T Symmetric orthogonal wavelets with dilation factor $M=3$
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 122-143
%V 401
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/
%G ru
%F ZNSL_2012_401_a6
A. V. Krivoshein; M. A. Ogneva. Symmetric orthogonal wavelets with dilation factor $M=3$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 122-143. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a6/

[1] I. Dobeshi, Desyat lektsii po veivletam, NITs Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2001

[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[3] M. K. Chobanu, “Trekhkanalnye ortogonalnye simmetrichnye veivlety i banki filtrov”, Trudy 13-i Mezhdun. konf. Tsifrovaya obrabotka signalov i ee primeneniya DSPA-2011, v. I, 2011, 290–293

[4] C. Chui, J. Lian, “Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale $=3$”, Appl. Comput. Harmon. Anal., 2 (1995), 21–51 | DOI | MR | Zbl

[5] B. Han, “Matrix extension with symmetry and applications to symmetric orthonormal complex $M$-wavelets”, J. Fourier Anal. Appl., 15 (2009), 684–705 | DOI | MR | Zbl

[6] B. Han, “Symmetric orthogonal filters and wavelets with linear-phase moments”, J. Comp. and Appl. Math., 236 (2011), 482–503 | DOI | MR | Zbl

[7] B. Han, X. S. Zhuang, “Matrix extension with symmetry and its application to symmetric orthonormal multiwavelets”, SIAM J. Math. Anal., 42 (2010), 2297–2317 | DOI | MR | Zbl

[8] A. Krivoshein, On construction of multivariate symmetric MRA-based wavelets, preprint, arXiv: 1201.2606v1 | MR

[9] W. Lawton, S. L. Lee, Z. Shen, “An algorithm for matrix extension and wavelet construction”, Math. Comput., 65 (1996), 723–737 | DOI | MR | Zbl

[10] A. Petukhov, “Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor”, Appl. Comput. Harmon. Anal., 17 (2004), 198–210 | DOI | MR | Zbl

[11] A. Ron, Z. Shen, “Affine systems in $L_2(R^d)$: the analysis of the analysis operator”, J. Func. Anal., 148 (1997), 408–447 | DOI | MR | Zbl