Free multiple interpolation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 103-121

Voir la notice de l'article provenant de la source Math-Net.Ru

Our aim in this article is to construct a bounded linear operator that solves the problem of multiple interpolation (interpolation with derivatives). It is proved that such an operator exists for nontangential and sparse interpolation sets if we consider interpolation by analytic functions satisfying the following condition: $|f^{(m)}(z_1)-f^{(m)}(z_2)|\leq\omega(|z_1-z_2|)$.
@article{ZNSL_2012_401_a5,
     author = {A. M. Kotochigov},
     title = {Free multiple interpolation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a5/}
}
TY  - JOUR
AU  - A. M. Kotochigov
TI  - Free multiple interpolation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 103
EP  - 121
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a5/
LA  - ru
ID  - ZNSL_2012_401_a5
ER  - 
%0 Journal Article
%A A. M. Kotochigov
%T Free multiple interpolation
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 103-121
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a5/
%G ru
%F ZNSL_2012_401_a5
A. M. Kotochigov. Free multiple interpolation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 103-121. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a5/