Free multiple interpolation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 103-121
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Our aim in this article is to construct a bounded linear operator that solves the problem of multiple interpolation (interpolation with derivatives). It is proved that such an operator exists for nontangential and sparse interpolation sets if we consider interpolation by analytic functions satisfying the following condition: $|f^{(m)}(z_1)-f^{(m)}(z_2)|\leq\omega(|z_1-z_2|)$.
			
            
            
            
          
        
      @article{ZNSL_2012_401_a5,
     author = {A. M. Kotochigov},
     title = {Free multiple interpolation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a5/}
}
                      
                      
                    A. M. Kotochigov. Free multiple interpolation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 103-121. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a5/