On regulariziers of unbounded linear operators in Banach spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 93-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Regulariziers of densely defined unbounded linear operators in Banach spaces and their applications to spectral theory are considered. Necessary and sufficient conditions in terms of regularizier properties for an unbounded operator $T$ to be discrete are obtained. In the case when $T$ has a selfadjoint regularizier in some Schatten–von Neumann ideals, asymptotic properties of the eigenvalues are investigated, namely, it is shown that the eigenvalues of $T$ asymptotically belong to a some angle in the complex plane.
@article{ZNSL_2012_401_a4,
     author = {V. M. Kaplitskii},
     title = {On regulariziers of unbounded linear operators in {Banach} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--102},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - On regulariziers of unbounded linear operators in Banach spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 93
EP  - 102
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/
LA  - ru
ID  - ZNSL_2012_401_a4
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T On regulariziers of unbounded linear operators in Banach spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 93-102
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/
%G ru
%F ZNSL_2012_401_a4
V. M. Kaplitskii. On regulariziers of unbounded linear operators in Banach spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 93-102. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/