On regulariziers of unbounded linear operators in Banach spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 93-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Regulariziers of densely defined unbounded linear operators in Banach spaces and their applications to spectral theory are considered. Necessary and sufficient conditions in terms of regularizier properties for an unbounded operator $T$ to be discrete are obtained. In the case when $T$ has a selfadjoint regularizier in some Schatten–von Neumann ideals, asymptotic properties of the eigenvalues are investigated, namely, it is shown that the eigenvalues of $T$ asymptotically belong to a some angle in the complex plane.
@article{ZNSL_2012_401_a4,
     author = {V. M. Kaplitskii},
     title = {On regulariziers of unbounded linear operators in {Banach} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--102},
     year = {2012},
     volume = {401},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/}
}
TY  - JOUR
AU  - V. M. Kaplitskii
TI  - On regulariziers of unbounded linear operators in Banach spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 93
EP  - 102
VL  - 401
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/
LA  - ru
ID  - ZNSL_2012_401_a4
ER  - 
%0 Journal Article
%A V. M. Kaplitskii
%T On regulariziers of unbounded linear operators in Banach spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 93-102
%V 401
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/
%G ru
%F ZNSL_2012_401_a4
V. M. Kaplitskii. On regulariziers of unbounded linear operators in Banach spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 93-102. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a4/

[1] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR

[2] S. S. Kutateladze, Osnovy funktsionalnogo analiza, Izd-vo instituta matematiki, Novosibirsk,, 2000 | MR

[3] Z. Prësdorf, Nekotorye klassy singulyarnykh integralnykh uravnenii, Mir, M., 1973

[4] V. A. Solonnikov, “Ob operatorakh, dopuskayuschikh regulyarizatsiyu”, Zap. nauchn. semin. LOMI, 21, 1971, 159–163 | MR | Zbl

[5] O. I. Panich, V. A. Solonnikov, “K voprosu ob ekvivalentnom pravom regulyarizatore”, Zap. nauchn. semin. LOMI, 22, 1971, 192–195 | MR | Zbl

[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[7] A. S. Markus, V. I. Matsaev, “Teorema o sravnenii spektrov i spektralnaya asimptotika dlya puchka M. V. Keldysha”, Mat. sb., 123(165):3 (1984), 391–406 | MR | Zbl

[8] A. S. Markus, V. I. Matsaev, “Ob asimptotike spektra operatorov, blizkikh k normalnym”, Funk. analiz i ego prilozh., 13:3 (1979), 93–94 | MR | Zbl

[9] A. S. Markus, V. I. Matsaev, “Teoremy o sravnenii spektrov lineinykh operatorov i spektralnye asimptotiki”, Trudy MMO, 45, 1982, 133–181 | MR | Zbl

[10] G. V. Radzievskii, “Asimptotika raspredeleniya kharakteristicheskikh chisel operator-funktsii, analiticheskikh v ugle”, Mat. sb., 112(154):3 (1980), 396–420 | MR | Zbl

[11] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[12] V. M. Kaplitskii, “Ob asimptoticheskom raspredelenii sobstvennykh znachenii samosopryazhennogo giperbolicheskogo differentsialnogo operatora vtorogo poryadka na dvumernom tore”, Sib. matem. zhurnal, 51:5 (2010), 1041–1060 | MR | Zbl

[13] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, Spektralnaya teoriya differentsialnykh operatorov, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 64, VINITI, M., 1989 | MR | Zbl

[14] V. V. Kozlov, I. V. Volovich, “Finite action Klein-Gordon solutions on Loretzian manifolds”, Int. J. Geom. Meth. Mod. Phys., 3:7 (2006), 1349–1357 | DOI | MR | Zbl

[15] A. S. Andreev, “Asimptotika spektra kompaktnykh psevdodifferentsialnykh operatorov na evklidovom mnozhestve”, Mat. sb., 137(179):2 (1988), 202–223 | MR | Zbl

[16] A. S. Andreev, “Otsenki spektra kompaktnykh psevdodifferentsialnykh operatorov v neogranichennykh oblastyakh”, Mat. sb., 181:7 (1990), 995–1006 | MR | Zbl