$J$-closed finite collections of Hardy-type subspaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 82-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Several proofs of the following statement are given: if $X^0,\dots,X^n$ are BMO-regular lattices on the circle and $x\in X^0\cap\dots\cap X^n$, then the distances from $x$ to the Hardy-type subspaces $X^j_A$ are roughly attained at one and the same element of $\bigcap_jX^j_A$.
@article{ZNSL_2012_401_a3,
     author = {P. Ivanishvili},
     title = {$J$-closed finite collections of {Hardy-type} subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--92},
     year = {2012},
     volume = {401},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a3/}
}
TY  - JOUR
AU  - P. Ivanishvili
TI  - $J$-closed finite collections of Hardy-type subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 82
EP  - 92
VL  - 401
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a3/
LA  - ru
ID  - ZNSL_2012_401_a3
ER  - 
%0 Journal Article
%A P. Ivanishvili
%T $J$-closed finite collections of Hardy-type subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 82-92
%V 401
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a3/
%G ru
%F ZNSL_2012_401_a3
P. Ivanishvili. $J$-closed finite collections of Hardy-type subspaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 82-92. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a3/

[1] N. J. Kalton, “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[2] S. V. Kislyakov, “O BMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135 | MR | Zbl

[3] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, Moskva–Leningrad, 1950

[4] S. V. Kislyakov, Q. Xu, “Interpolation of weighted and vector valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[5] J. Bergh, J. Löfström, Interpolation spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl

[6] S. V. Kislyakov, “Interpolation of Hardy spaces: some recent developments”, Israel Math. Conf. Proceedings, 13, 1999, 102–140 | MR | Zbl

[7] S. V. Kislyakov, Q. Xu, “Partial retractions for weighted Hardy spaces”, Studia Math., 138 (2000), 251–264 | MR | Zbl

[8] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR

[9] S. V. Kislyakov, “On BMO-regular couples of lattices of measurable functions”, Studia Math., 159 (2003), 277–290 | DOI | MR | Zbl