On control subspaces of minimal dimension
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 71-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The quantity "$\operatorname{disc}$" for a (bounded linear) operator was introduced by N. K. Nikol'skii and V. I. Vasjunin, namely, $$ \operatorname{disc}T=\sup_{E\in\mathcal R(T)}\min\{\dim E'\colon E'\subset E,\ E'\in\mathcal R(T)\}, $$ where $\mathcal R(T)$ is the family of all finite dimensional reproducing subspaces for an operator $T$. We give sufficient conditions on operators $T$ under which $\operatorname{disc}T=\infty$. In particular, we show that there exists an operator $T$ with $\operatorname{disc}T=\infty$ and such that $T$ can be represented in the form $T=T_1\oplus T_2$ with $\operatorname{disc}T_1=\operatorname{disc}T_2=1$.
@article{ZNSL_2012_401_a2,
     author = {M. F. Gamal'},
     title = {On control subspaces of minimal dimension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--81},
     year = {2012},
     volume = {401},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - On control subspaces of minimal dimension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 71
EP  - 81
VL  - 401
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/
LA  - ru
ID  - ZNSL_2012_401_a2
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T On control subspaces of minimal dimension
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 71-81
%V 401
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/
%G ru
%F ZNSL_2012_401_a2
M. F. Gamal'. On control subspaces of minimal dimension. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 71-81. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/

[1] V. I. Vasyunin, N. K. Nikolskii, “Upravlyayuschie prostranstva minimalnoi razmernosti. Elementarnoe vvedenie. Discotheca”, Zap. nauchn. semin. LOMI, 113, 1981, 41–75 | MR

[2] N. K. Nikol'skii, V. I. Vasjunin, “Control subspaces of minimal dimension and root vectors”, Integral Equations Operator Theory, 6 (1983), 274–311 | DOI | MR

[3] N. K. Nikolskii, V. I. Vasjunin, “Control subspaces of minimal dimension, unitary and model operators”, J. Operator Theory, 10 (1983), 307–330 | MR

[4] C. Apostol, H. Bercovici, C. Foias, C. Pearcy, “Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I”, J. Funct. Anal., 63 (1985), 369–404 | DOI | MR | Zbl

[5] H. Bercovici, C. Foiaş, C. Pearcy, “Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I”, Michigan Math. J., 30 (1983), 335–354 | DOI | MR | Zbl

[6] B. Sekefalvi-Nad, Ch. Foyash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[7] B. Chevreau, G. Exner, C. Pearcy, “On the structure of contraction operators. III”, Michigan Math. J., 36 (1989), 29–62 | DOI | MR | Zbl

[8] H. Bercovici, “Factorization theorems and the structure of operators on Hilbert space”, Ann. Math., 128 (1988), 399–413 | DOI | MR | Zbl

[9] J. B. Conway, Subnormal operators, Pitnam (Advanced Publishing Program), 1981 | MR | Zbl

[10] D. Gaier, Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl

[11] D. Sarason, “Weak-star generators of $H^\infty$”, Pacific J. Math., 17 (1966), 519–528 | DOI | MR | Zbl