On control subspaces of minimal dimension
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 71-81
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The quantity "$\operatorname{disc}$" for a (bounded linear) operator was introduced by N. K. Nikol'skii and V. I. Vasjunin, namely, 
$$
\operatorname{disc}T=\sup_{E\in\mathcal R(T)}\min\{\dim E'\colon E'\subset E,\ E'\in\mathcal R(T)\},
$$
where $\mathcal R(T)$ is the family of all finite dimensional reproducing subspaces for an operator $T$. We give sufficient conditions on operators $T$ under which $\operatorname{disc}T=\infty$. In particular, we show that there exists an operator $T$ with $\operatorname{disc}T=\infty$ and such that $T$ can be represented in the form $T=T_1\oplus T_2$ with $\operatorname{disc}T_1=\operatorname{disc}T_2=1$.
			
            
            
            
          
        
      @article{ZNSL_2012_401_a2,
     author = {M. F. Gamal'},
     title = {On control subspaces of minimal dimension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/}
}
                      
                      
                    M. F. Gamal'. On control subspaces of minimal dimension. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 71-81. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/