On control subspaces of minimal dimension
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 71-81

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantity "$\operatorname{disc}$" for a (bounded linear) operator was introduced by N. K. Nikol'skii and V. I. Vasjunin, namely, $$ \operatorname{disc}T=\sup_{E\in\mathcal R(T)}\min\{\dim E'\colon E'\subset E,\ E'\in\mathcal R(T)\}, $$ where $\mathcal R(T)$ is the family of all finite dimensional reproducing subspaces for an operator $T$. We give sufficient conditions on operators $T$ under which $\operatorname{disc}T=\infty$. In particular, we show that there exists an operator $T$ with $\operatorname{disc}T=\infty$ and such that $T$ can be represented in the form $T=T_1\oplus T_2$ with $\operatorname{disc}T_1=\operatorname{disc}T_2=1$.
@article{ZNSL_2012_401_a2,
     author = {M. F. Gamal'},
     title = {On control subspaces of minimal dimension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {401},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/}
}
TY  - JOUR
AU  - M. F. Gamal'
TI  - On control subspaces of minimal dimension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 71
EP  - 81
VL  - 401
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/
LA  - ru
ID  - ZNSL_2012_401_a2
ER  - 
%0 Journal Article
%A M. F. Gamal'
%T On control subspaces of minimal dimension
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 71-81
%V 401
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/
%G ru
%F ZNSL_2012_401_a2
M. F. Gamal'. On control subspaces of minimal dimension. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 40, Tome 401 (2012), pp. 71-81. http://geodesic.mathdoc.fr/item/ZNSL_2012_401_a2/