Degeneracy of some derived categories
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 193-207

Voir la notice de l'article provenant de la source Math-Net.Ru

We study derived categories for the category of the modules over some generalized rings. In particular, the cases of $\mathcal O_\mathbb R$ and of $\mathbb F_{1^n}$ are considered. It is shown that these derived categories are degenerate. The degeneracy means that every isomorphism in such a category can be detected on the $\pi_0$- and $\pi^0$-levels.
@article{ZNSL_2012_400_a9,
     author = {A. L. Smirnov},
     title = {Degeneracy of some derived categories},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--207},
     publisher = {mathdoc},
     volume = {400},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a9/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Degeneracy of some derived categories
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 193
EP  - 207
VL  - 400
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a9/
LA  - en
ID  - ZNSL_2012_400_a9
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Degeneracy of some derived categories
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 193-207
%V 400
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a9/
%G en
%F ZNSL_2012_400_a9
A. L. Smirnov. Degeneracy of some derived categories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 193-207. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a9/