The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 166-188

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G=\mathrm{Sp}_{2n}(\mathbb C)$ be the symplectic group, $B$ its Borel subgroup and $\Phi=C_n$ the root system of $G$. To each involution $\sigma$ in the Weyl group $W$ of $\Phi$ one can assign the orbit $\Omega_\sigma$ of the coadjoint action of $B$ on the dual space of the Lie algebra of the unipotent radical of $B$. Let $\sigma,\tau$ be involutions in $W$. We prove that $\Omega_\sigma$ is contained in the closure of $\Omega_\tau$ if and only if $\sigma$ is less or equal than $\tau$ with respect to the Bruhat–Chevalley order on $W$.
@article{ZNSL_2012_400_a7,
     author = {M. V. Ignat'ev},
     title = {The {Bruhat--Chevalley} order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--188},
     publisher = {mathdoc},
     volume = {400},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/}
}
TY  - JOUR
AU  - M. V. Ignat'ev
TI  - The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 166
EP  - 188
VL  - 400
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/
LA  - ru
ID  - ZNSL_2012_400_a7
ER  - 
%0 Journal Article
%A M. V. Ignat'ev
%T The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 166-188
%V 400
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/
%G ru
%F ZNSL_2012_400_a7
M. V. Ignat'ev. The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 166-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/