The Bruhat–Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 166-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G=\mathrm{Sp}_{2n}(\mathbb C)$ be the symplectic group, $B$ its Borel subgroup and $\Phi=C_n$ the root system of $G$. To each involution $\sigma$ in the Weyl group $W$ of $\Phi$ one can assign the orbit $\Omega_\sigma$ of the coadjoint action of $B$ on the dual space of the Lie algebra of the unipotent radical of $B$. Let $\sigma,\tau$ be involutions in $W$. We prove that $\Omega_\sigma$ is contained in the closure of $\Omega_\tau$ if and only if $\sigma$ is less or equal than $\tau$ with respect to the Bruhat–Chevalley order on $W$.
@article{ZNSL_2012_400_a7,
     author = {M. V. Ignat'ev},
     title = {The {Bruhat{\textendash}Chevalley} order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--188},
     year = {2012},
     volume = {400},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/}
}
TY  - JOUR
AU  - M. V. Ignat'ev
TI  - The Bruhat–Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 166
EP  - 188
VL  - 400
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/
LA  - ru
ID  - ZNSL_2012_400_a7
ER  - 
%0 Journal Article
%A M. V. Ignat'ev
%T The Bruhat–Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 166-188
%V 400
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/
%G ru
%F ZNSL_2012_400_a7
M. V. Ignat'ev. The Bruhat–Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 166-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/

[1] C. A. Andrè, A. M. Neto, “Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$”, J. Algebra, 305 (2006), 394–429 | DOI | MR | Zbl

[2] E. Bagno, Y. Cherniavsky, Congruence $B$-orbits and the Bruhat poset of involutions of the symmetric group, 2009, arXiv: 0912.1819[math.CO] | MR

[3] S. Billey, V. Lakshmibai, Singular loci of Schubert varieties, Progr. Math., 182, Birkhäuser, 2000 | MR | Zbl

[4] N. Burbaki, Gruppy Li i algebry Li, Glavy 4–6, Mir, M., 1972

[5] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[6] M. V. Ignatev, “Ortogonalnye podmnozhestva klassicheskikh sistem kornei i koprisoedinënnye orbity unipotentnykh grupp”, Mat. zametki, 86:1 (2009), 65–80 ; arXiv: 0904.2841[math.RT] | DOI | MR | Zbl

[7] M. V. Ignatev, “Ortogonalnye podmnozhestva sistem kornei i metod orbit”, Algebra i analiz, 22:5 (2010), 104–130 ; arXiv: 1007.5220[math.RT] | MR | Zbl

[8] M. V. Ignatyev, “Combinatorics of $B$-orbits and the Bruhat–Chevalley order on involutions”, Transformation Groups (to appear); 2011, arXiv: 1101.2189[math.RT]

[9] A. N. Panov, “Involyutsii v $S_n$ i assotsiirovannye koprisoedinënnye orbity”, Zap. nauchn. semin. POMI, 349, 2007, 150–173 ; arXiv: 0801.3022[math.RT] | MR

[10] F. Incitti, Bruhat order on the involutions of classical Weyl groups, Ph. D. Thesis, Dipartimento di Matematica “Guido Castelnuovo”, Università di Roma “La Sapienza”, 2003

[11] F. Incitti, “The Bruhat order on the involutions of the symmetric groups”, J. Alg. Combin., 20:3 (2004), 243–261 | DOI | MR | Zbl

[12] A. Melnikov, “$B$-orbit in solution to the equation $X^2=0$ in triangular matrices”, J. Algebra, 223 (2000), 101–108 | DOI | MR | Zbl

[13] A. Melnikov, “Description of $B$-orbit closures of order 2 in upper-triangular matrices”, Transformation Groups, 11:2 (2006), 217–247 | DOI | MR | Zbl

[14] A. Melnikov, $B$-orbits of nilpotent order 2 and link patterns, 2007, arXiv: math.RT/0703371 | MR

[15] R. W. Richardson, T. A. Springer, “The Bruhat order on symmetric varieties”, Geom. Dedicata, 35:1–3 (1990), 389–436 | MR | Zbl