The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 166-188
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G=\mathrm{Sp}_{2n}(\mathbb C)$ be the symplectic group, $B$ its Borel subgroup and $\Phi=C_n$ the root system of $G$. To each involution $\sigma$ in the Weyl group $W$ of $\Phi$ one can assign the orbit $\Omega_\sigma$ of the coadjoint action of $B$ on the dual space of the Lie algebra of the unipotent radical of $B$.
Let $\sigma,\tau$ be involutions in $W$. We prove that $\Omega_\sigma$ is contained in the closure of $\Omega_\tau$ if and only if $\sigma$ is less or equal than $\tau$ with respect to the Bruhat–Chevalley order on $W$.
@article{ZNSL_2012_400_a7,
author = {M. V. Ignat'ev},
title = {The {Bruhat--Chevalley} order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--188},
publisher = {mathdoc},
volume = {400},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/}
}
TY - JOUR AU - M. V. Ignat'ev TI - The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 166 EP - 188 VL - 400 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/ LA - ru ID - ZNSL_2012_400_a7 ER -
%0 Journal Article %A M. V. Ignat'ev %T The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 166-188 %V 400 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/ %G ru %F ZNSL_2012_400_a7
M. V. Ignat'ev. The Bruhat--Chevalley order on involutions of the hyperoctahedral group and~combinatorics of $B$-orbit closures. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 166-188. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a7/