Haar multiresolution analysis and Haar bases on the ring of rational adeles
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 158-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a family of Haar multiresolution analyses in the Hilbert space $L^2(\mathbb A)$ where $\mathbb A$ is the ring of adeles over the field $\mathbb Q$ of rationals. The corresponding discrete group of translations and scaling function are respectively the group of additive translations by elements of $\mathbb Q$ embedded diagonally in $\mathbb A$ and the characteristic function of the standard fundamental domain of this group. As a consequence we come to a family of orthonormal wavelet bases in $L^2(\mathbb A)$. We observe that both the number of generating wavelet functions and the number of elementary dilations are infinite.
@article{ZNSL_2012_400_a6,
     author = {S. Evdokimov},
     title = {Haar multiresolution analysis and {Haar} bases on the ring of rational adeles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--165},
     year = {2012},
     volume = {400},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a6/}
}
TY  - JOUR
AU  - S. Evdokimov
TI  - Haar multiresolution analysis and Haar bases on the ring of rational adeles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 158
EP  - 165
VL  - 400
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a6/
LA  - ru
ID  - ZNSL_2012_400_a6
ER  - 
%0 Journal Article
%A S. Evdokimov
%T Haar multiresolution analysis and Haar bases on the ring of rational adeles
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 158-165
%V 400
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a6/
%G ru
%F ZNSL_2012_400_a6
S. Evdokimov. Haar multiresolution analysis and Haar bases on the ring of rational adeles. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 158-165. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a6/

[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR

[2] S. Mallat, Multiresolution representation and wavelets, Ph. D. Thesis, University of Pennsylvania, Philadelphia, PA, 1988

[3] Y. Meyer, Ondelettes and fonctions splines, Seminaire EDP, Paris, 1986

[4] S. V. Kozyrev, “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | DOI | MR | Zbl

[5] V. Shelkovich, M. Skopina, “$p$-Adic Haar multiresolution analysis and pseudo-differential operators”, J. Fourier Anal. Appl., 15:3 (2009), 366–393 | DOI | MR | Zbl

[6] A. Albeverio, S. Evdokimov, M. Skopina, “$p$-Adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:3 (2010), 693–714 | DOI | MR | Zbl

[7] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics, 110, 2nd ed., Springer-Verlag, New York, 1994 | DOI | MR | Zbl