@article{ZNSL_2012_400_a6,
author = {S. Evdokimov},
title = {Haar multiresolution analysis and {Haar} bases on the ring of rational adeles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--165},
year = {2012},
volume = {400},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a6/}
}
S. Evdokimov. Haar multiresolution analysis and Haar bases on the ring of rational adeles. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 158-165. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a6/
[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR
[2] S. Mallat, Multiresolution representation and wavelets, Ph. D. Thesis, University of Pennsylvania, Philadelphia, PA, 1988
[3] Y. Meyer, Ondelettes and fonctions splines, Seminaire EDP, Paris, 1986
[4] S. V. Kozyrev, “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | DOI | MR | Zbl
[5] V. Shelkovich, M. Skopina, “$p$-Adic Haar multiresolution analysis and pseudo-differential operators”, J. Fourier Anal. Appl., 15:3 (2009), 366–393 | DOI | MR | Zbl
[6] A. Albeverio, S. Evdokimov, M. Skopina, “$p$-Adic multiresolution analysis and wavelet frames”, J. Fourier Anal. Appl., 16:3 (2010), 693–714 | DOI | MR | Zbl
[7] S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics, 110, 2nd ed., Springer-Verlag, New York, 1994 | DOI | MR | Zbl