The Hilbert symbol of a~polynomial formal group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 127-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We constract an explicit formula for the analogue of Hilbert pairing over universal formal modules for polynomial formal group of integer ring of local field is constructed. This pairing is well-defined, invariant under the change of variables and has a property similar to the invariance under the change of series expansion. Aim of this construction is to obtain explicit formulae for generalised Hilbert pairing over arbitrary formal module for polynomial formal group of local ring.
@article{ZNSL_2012_400_a4,
     author = {S. V. Vostokov and V. V. Volkov and G. K. Pak},
     title = {The {Hilbert} symbol of a~polynomial formal group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--132},
     publisher = {mathdoc},
     volume = {400},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a4/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - V. V. Volkov
AU  - G. K. Pak
TI  - The Hilbert symbol of a~polynomial formal group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 127
EP  - 132
VL  - 400
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a4/
LA  - ru
ID  - ZNSL_2012_400_a4
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A V. V. Volkov
%A G. K. Pak
%T The Hilbert symbol of a~polynomial formal group
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 127-132
%V 400
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a4/
%G ru
%F ZNSL_2012_400_a4
S. V. Vostokov; V. V. Volkov; G. K. Pak. The Hilbert symbol of a~polynomial formal group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 127-132. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a4/