Overgroups of subsystem subgroups in exceptional groups: levels
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 70-126
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An embedding of root systems $\Delta\subseteq\Phi$ determines the corresponding regular embedding $G(\Delta,R)\le G(\Phi,R)$ of Chevalley groups, over an arbitrary commutative ring $R$. Denote by $E(\Delta,R)$ the elementary subgroup of $G(\Delta,R)$. In the present paper we initiate the study of intermediate subgroups $H$, $E(\Delta,R)\le H\le G(\Phi,R)$, provided that $\Phi=\mathrm{E_6,E_7,E_8,F}_4$ or $\mathrm G_2$, and there are no roots in $\Phi$ orthogonal to all of $\Delta$. There are 72 such pairs $(\Phi,\Delta)$. For $\mathrm F_4$ and $\mathrm G_2$ we assume, moreover, that $2\in R^*$ or $6\in R^*$, respectively. For all such subsystems $\Delta$ we construct the levels of intermediate subgroups. We prove that these levels are detemined by certain systems of ideals in $R$, one for each $\Delta$-equivalence class of roots in $\Phi\setminus\Delta$, and calculate all relations among these ideals, in each case.
			
            
            
            
          
        
      @article{ZNSL_2012_400_a3,
     author = {N. A. Vavilov and A. V. Shchegolev},
     title = {Overgroups of subsystem subgroups in exceptional groups: levels},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--126},
     publisher = {mathdoc},
     volume = {400},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a3/}
}
                      
                      
                    N. A. Vavilov; A. V. Shchegolev. Overgroups of subsystem subgroups in exceptional groups: levels. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 70-126. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a3/