Parabolic subgroups of $\mathrm{SO}_{2l}$ over a Dedekind ring of arithmetic type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 50-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $R$ be a commutative ring all of whose proper factor rings are finite and such that there exists a unit of infinite order. We show that for a subgroup $P$ in $G=\mathrm{SO}(2l,R)$, $l\ge3$, containing Borel subgroup $B$, the following alternative holds. Either $P$ contains a relative elementary subgroup $E_I$ for some ideal $I\neq0$, or $H$ is contained in a proper standard parabolic subgroup. For Dedekind rings of arithmetic type this allows, under some mild additional assumptions on units, to completely describe overgroups of $B$ in $G$. Earlier, similar results for the special linear and symplectic groups were obtained by A. V. Alexandrov and the second author. The proofs in the present paper follow the same general strategy, but are noticeably harder, from a technical viewpoint.
@article{ZNSL_2012_400_a2,
     author = {K. O. Batalkin and N. A. Vavilov},
     title = {Parabolic subgroups of $\mathrm{SO}_{2l}$ over {a~Dedekind} ring of arithmetic type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--69},
     year = {2012},
     volume = {400},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/}
}
TY  - JOUR
AU  - K. O. Batalkin
AU  - N. A. Vavilov
TI  - Parabolic subgroups of $\mathrm{SO}_{2l}$ over a Dedekind ring of arithmetic type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 50
EP  - 69
VL  - 400
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/
LA  - ru
ID  - ZNSL_2012_400_a2
ER  - 
%0 Journal Article
%A K. O. Batalkin
%A N. A. Vavilov
%T Parabolic subgroups of $\mathrm{SO}_{2l}$ over a Dedekind ring of arithmetic type
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 50-69
%V 400
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/
%G ru
%F ZNSL_2012_400_a2
K. O. Batalkin; N. A. Vavilov. Parabolic subgroups of $\mathrm{SO}_{2l}$ over a Dedekind ring of arithmetic type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 50-69. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/

[1] A. V. Aleksandrov, N. A. Vavilov, “Parabolicheskie podgruppy $\mathrm{SL}_n$ i $\mathrm{Sp}_{2l}$ nad dedekindovym koltsom arifmeticheskogo tipa”, Zap. nauchn. semin. POMI, 375, 2010, 5–21 | MR

[2] Kh. Bass, Dzh. Milnor, Zh.-P. Serr, “Reshenie kongruents-problemy dlya $\mathrm{SL}_n$ ($n\ge3$) i $\mathrm{Sp}_{2n}$ ($n\ge2)$”, Matematika (period. sb. perev. in. statei), 14:6 (1970), 64–128 ; Математика (период. сб. перев. ин. статей), 15:1 (1971), 44–60 | Zbl | Zbl

[3] Z. I. Borevich, “O parabolicheskikh podgruppakh v lineinykh gruppakh nad polulokalnym koltsom”, Vestn. Leningr. un-ta, 1976, no. 13, 16–24 | Zbl

[4] Z. I. Borevich, “O parabolicheskikh podgruppakh v spetsialnoi lineinoi gruppe nad polulokalnym koltsom”, Vestn. Leningr. un-ta, 1976, no. 19, 29–34 | Zbl

[5] Z. I. Borevich, N. A. Vavilov, V. Narkevich, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom”, Zap. nauchn. semin. LOMI, 94, 1979, 13–20 | MR | Zbl

[6] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 ; Гл. VII, VIII, 1978 | MR | MR

[7] N. A. Vavilov, “O parabolicheskikh kongruents-podgruppakh v lineinykh gruppakh”, Zap. nauchn. semin. LOMI, 64, 1976, 55–63 | MR | Zbl

[8] N. A. Vavilov, “Parabolicheskie podgruppy polnoi lineinoi gruppy nad dedekindovym koltsom arifmeticheskogo tipa”, Zap. nauchn. semin. LOMI, 71, 1977, 66–79 | MR | Zbl

[9] N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad koltsom, soderzhaschie gruppu kletochno treugolnykh matrits. I”, Vestn. Leningr. un-ta, 1977, no. 19, 139–140 ; “II”, Вестн. Ленингр. ун-та, 13:19 (1982), 5–10 | MR | Zbl | MR

[10] N. A. Vavilov, “O parabolicheskikh podgruppakh grupp Shevalle nad polulokalnym koltsom”, Zap. nauchn. semin. LOMI, 75, 1978, 43–58 | MR | Zbl

[11] N. A. Vavilov, “O parabolicheskikh podgruppakh grupp Shevalle skreschennogo tipa nad polulokalnym koltsom”, Zap. nauchn. semin. LOMI, 94, 1979, 21–36 | MR | Zbl

[12] N. A. Vavilov, “Parabolicheskie podgruppy grupp Shevalle nad kommutativnym koltsom”, Zap. nauchn. semin. LOMI, 116, 1982, 20–43 | MR | Zbl

[13] N. A. Vavilov, “O gruppe $\mathrm{SL}_n$ nad dedekindovym koltsom arifmeticheskogo tipa”, Vestn. Leningr. un-ta, 1983, no. 7, 5–10 | MR | Zbl

[14] N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom arifmeticheskogo tipa”, Izv. VUZ'ov, 1987, no. 12, 14–20 | MR | Zbl

[15] N. A. Vavilov, E. B. Plotkin, “Setevye podgruppy grupp Shevalle. I”, Zap. nauch. semin. LOMI, 94, 1979, 40–49 ; “II”, Зап. науч. семин. ЛОМИ, 114, 1982, 62–76 | MR | Zbl | MR | Zbl

[16] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta, Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR

[17] L. N. Vasershtein, “O gruppe $\mathrm{SL}_2$ nad dedekindovymi koltsami arifmeticheskogo tipa”, Mat. Sb., 89(131):2 (1972), 313–322 | MR | Zbl

[18] I. Z. Golubchik, “O podgruppakh polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vsesoyuzn. Algebr. konf., Tez. dokl., v. 1, 1981, 39–40 | MR

[19] E. V. Dybkova, “O nekotorykh kongruents-podgruppakh simplekticheskoi gruppy”, Zap. nauchn. semin. LOMI, 64, 1976, 80–91 | MR | Zbl

[20] N. S. Romanovskii, “O podgruppakh obschei i spetsialnoi lineinykh gruppakh nad koltsom”, Mat. Zametki, 9:6 (1971), 699–708 | MR | Zbl

[21] Zh.-P. Serr, “Problema kongruents-podgrupp dlya $\mathrm{SL}_2$”, Matematika (period. sb. perev. in. statei), 15:6 (1971), 12–45

[22] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[23] R. Hazrat, N. Vavilov, “Bak's work on $K$-theory of rings”, with an appendix by Max Karoubi, J. $K$-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[24] W. van der Kallen, “Stability for $K_2$ of Dedekind rings of arithmetic type”, Lecture Notes Math., 854, 1981, 217–248 | DOI | MR | Zbl

[25] B. Liehl, “On the group $\mathrm{SL}_2$ over orders of arithmetic type”, J. reine angew. Math., 323:1 (1981), 153–171 | MR | Zbl

[26] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples deployés”, Ann. Sci.École Norm. Sup., $4^\text{\`eme}$ sér., 2 (1969), 1–62 | MR | Zbl

[27] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[28] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[29] K. Suzuki, “On parabolic subgroups of Chevalley groups over local rings”, Tôhoku Math. J., 28:1 (1976), 57–66 | DOI | MR | Zbl

[30] K. Suzuki, “On parabolic subgroups of Chevalley groups over commutative rings”, Sci. Repts Tokyo Kyoiku Daigaku, 13:366–382 (1977), 225–232 | MR | Zbl

[31] J. Tits, “Théorème de Bruhat et sous-groupes paraboliques”, C. R. Acad. Sci. Paris, 254 (1962), 2910–2912 | MR | Zbl

[32] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris Sér. A, 283 (1976), 693–695 | MR | Zbl

[33] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc. Conf. Groups of Lie Type and their Geometries (Como – 1993), Cambridge Univ. Press, 1995, 233–280 | DOI | MR | Zbl

[34] C. Wenzel, “Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field”, Trans. Amer. Math. Soc., 337:1 (1993), 211–218 | DOI | MR | Zbl