Parabolic subgroups of $\mathrm{SO}_{2l}$ over a~Dedekind ring of arithmetic type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 50-69
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a commutative ring all of whose proper factor rings are finite and such that there exists a unit of infinite order. We show that for a subgroup $P$ in $G=\mathrm{SO}(2l,R)$, $l\ge3$, containing Borel subgroup $B$, the following alternative holds. Either $P$ contains a relative elementary subgroup $E_I$ for some ideal $I\neq0$, or $H$ is contained in a proper standard parabolic subgroup. For Dedekind rings of arithmetic type this allows, under some mild additional assumptions on units, to completely describe overgroups of $B$ in $G$. Earlier, similar results for the special linear and symplectic groups were obtained by A. V. Alexandrov and the second author. The proofs in the present paper follow the same general strategy, but are noticeably harder, from a technical viewpoint.
@article{ZNSL_2012_400_a2,
author = {K. O. Batalkin and N. A. Vavilov},
title = {Parabolic subgroups of $\mathrm{SO}_{2l}$ over {a~Dedekind} ring of arithmetic type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--69},
publisher = {mathdoc},
volume = {400},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/}
}
TY - JOUR
AU - K. O. Batalkin
AU - N. A. Vavilov
TI - Parabolic subgroups of $\mathrm{SO}_{2l}$ over a~Dedekind ring of arithmetic type
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2012
SP - 50
EP - 69
VL - 400
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/
LA - ru
ID - ZNSL_2012_400_a2
ER -
K. O. Batalkin; N. A. Vavilov. Parabolic subgroups of $\mathrm{SO}_{2l}$ over a~Dedekind ring of arithmetic type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 50-69. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a2/