Reduced Whitehead groups and conjugacy problem for special unitary groups of anisotropic hermitian forms
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 222-245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K/k$ be a separable field extension of degree 2, $D$ be a finite-dimensional central division algebra over $K$ with $K/k$-involution $\tau$, $h$ be an hermitian anisotropic form on a right $D$-vector space with respect to $\tau$ and let $U(h)$ be the unitary group of $h$. Then the reduced Whitehead group of its special linear subgroup is defined as follows: $\mathrm{SUK_1^{an}}(h)=\mathrm{SU}(h)/[U(h),U(h)]$, where $[U(h),U(h)]$ is the commutator subgroup of $U(h)$. The first main result establishes a link between the above group and its analog $\mathrm{SUK}_1(h)$ for the case of isotropic $h$ (with respect to the same $\tau$). Theorem. There exists a surjective homomorphism from $\mathrm{SUK_1^{an}}(h)$ to $\mathrm{SUK}_1(h)$. Furthermore, we give also a solution of conjugacy problem for special unitary subgroups of anisotropic hermitian forms over quaternion division algebras as subgroups of their multiplicative groups.
@article{ZNSL_2012_400_a12,
     author = {V. I. Yanchevskii},
     title = {Reduced {Whitehead} groups and conjugacy problem for special unitary groups of anisotropic hermitian forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--245},
     year = {2012},
     volume = {400},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a12/}
}
TY  - JOUR
AU  - V. I. Yanchevskii
TI  - Reduced Whitehead groups and conjugacy problem for special unitary groups of anisotropic hermitian forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 222
EP  - 245
VL  - 400
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a12/
LA  - ru
ID  - ZNSL_2012_400_a12
ER  - 
%0 Journal Article
%A V. I. Yanchevskii
%T Reduced Whitehead groups and conjugacy problem for special unitary groups of anisotropic hermitian forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 222-245
%V 400
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a12/
%G ru
%F ZNSL_2012_400_a12
V. I. Yanchevskii. Reduced Whitehead groups and conjugacy problem for special unitary groups of anisotropic hermitian forms. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 222-245. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a12/

[1] A. A. Albert, “Involutorial simple algebras and real Riemann matrices”, Ann. Math., 36 (1935), 886–964 | DOI | MR | Zbl

[2] V. Chernousov, A. Merkurjev, “$R$-equivalence and special unitary groups”, J. Algebra, 209 (1998), 175–198 | DOI | MR | Zbl

[3] J.-L. Colliot-Thélène, J.-J. Sansuc, “La $R$-équivalence sur les tores”, Ann. Sci. École Norm. Sup., 10 (1977), 175–229 | MR | Zbl

[4] P. Draxl, “$\mathrm{SK}_1$ von Algebren über vollständig diskret bewerteten Körpern und Galoiskohomologie abelscher Körpererweiterungen”, J. reine angew. Math., 293–294 (1977), 116–142 | MR | Zbl

[5] Ph. Gille, “Le problème de Kneser–Tits”, Séminaire Bourbaki (2007–2008), Astérique, 326, 2009, Exp. No. 983, 39–81 | MR | Zbl

[6] R. Hazrat, A. R. Wadsworth, “$\mathrm{SK}_1$ of graded division algebras”, Israel J. Math., 183 (2011), 117–163 | DOI | MR | Zbl

[7] R. Hazrat, A. R. Wadsworth, “Unitary $\mathrm{SK}_1$ of graded and valued division algebras”, Proc. London Math. Soc. (3), 103 (2011), 508–534 | DOI | MR | Zbl

[8] M. Kneser, “Orthogonale Gruppen über algebraischen Zahlkörpern”, J. reine angew. Math., 196 (1956), 213–220 | MR | Zbl

[9] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Colloq. Publ., 44, Amer. Math. Soc., 1998, 593 pp. | MR | Zbl

[10] Y. Segev, “On finite homomorphic images of the multiplicative groups of a division algebra”, Ann. Math., 149 (1999), 219–251 | DOI | MR | Zbl

[11] Y. Segev, G. Seitz, “Anisotropic groups of type $A_n$ and the commuting graph of finite simple groups”, Pacific J. Math., 202:1 (2002), 125–225 | DOI | MR | Zbl

[12] B. A. Sethuraman, B. Sury, “On the special unitary group of a division algebra”, Proc. Amer. Math. Soc., 134 (2005), 351–354 | DOI | MR

[13] B. Sury, “On $\mathrm{SU}(1,D)/[\mathrm U(1,D),\mathrm U(1,D)]$ for a quaternion division algebra $D$”, Arch. Math., 90 (2008), 493–500 | DOI | MR | Zbl

[14] J. Tits, “Groupes de Whitehead de groupes algébriques simples sur un corps (d'après V. P. Platonov et. al.)”, Séminaire Bourbaki (1976–1977), Lect. Notes Math., 677, 1978, Exp. No. 505, 218–236 | MR | Zbl

[15] A. R. Wadsworth, “Unitary SK$_1$ of semiramified graded and valued division algebras”, Manuscripta Math. (to appear) | MR

[16] A. R. Wadsworth, V. I. Yanchevskii, “Unitary $\mathrm{SK}_1$ for a graded division ring and its quotient division ring”, J. Algebra, 352 (2012), 62–78 | DOI | MR | Zbl

[17] S. Wang, “On the commutator group of a simple algebra”, Amer. J. Math., 72 (1950), 323–334 | DOI | MR | Zbl

[18] V. I. Yanchevskii, “Whitehead groups and groups of $R$-equivalence classes of linear algebraic groups of noncommutative classical type over some virtual fields”, Proceeding of the International Conference on Algebraic Groups and Arithmetic, TIFR, Mumbai, December 2001, 491–505 | MR

[19] V. E. Voskresenskii, Algebraicheskie tory, Nauka, M., 1977 | MR

[20] Yu. L. Ershov, “Genzelevy normirovaniya tel i gruppa $\mathrm{SK}_1$”, Matem. sb., 117(159):1 (1982), 60–68 | MR | Zbl

[21] Yu. I. Manin, Kubicheskie formy, Nauka, M., 1972 | MR | Zbl

[22] A. P. Monastyrnyi, V. I. Yanchevskii, “Gruppy Uaitkheda spinornykh grupp”, Izv. AN SSSR, ser. mat., 54:1 (1990), 60–96 | MR | Zbl

[23] V. P. Platonov, “O probleme Tannaka–Artina”, DAN SSSR, 221:5 (1975), 1038–1041 | MR | Zbl

[24] V. P. Platonov, “Problema Tannaka–Artina i privedennaya $K$-teoriya”, Izvestiya AN SSSR, ser. matem., 40:2 (1976), 227–261 | MR | Zbl

[25] V. P. Platonov, A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel, Nauka, M., 1991 | MR

[26] V. P. Platonov, V. I. Yanchevskii, “Struktura unitarnykh grupp i kommutant prostoi algebry nad globalnymi polyami”, Dokl. AN SSSR, 208:3 (1973), 541–544 | MR | Zbl

[27] A. V. Prokopchuk, V. I. Yanchevskii, “O drugom dokazatelstve teoremy B. Suri”, Zap. nauchn. semin. POMI, 365, 2009, 196–207 | MR | Zbl

[28] V. I. Yanchevskii, “Prostye algebry s involyutsiyami i unitarnye gruppy”, Matem. sb., 93(135):3 (1974), 368–380 | MR | Zbl

[29] V. I. Yanchevskii, “Privedennaya unitarnaya $K$-teoriya i tela nad genzelevymi diskretno normirovannymi polyami”, Izv. AN SSSR, ser. matem., 42:4 (1978), 879–918 | MR | Zbl

[30] V. I. Yanchevskii, “Obratnaya zadacha privedennoi unitarnoi $K$-teorii”, Matem. zametki, 26:3 (1979), 475–482 | MR | Zbl

[31] V. I. Yanchevskii, “Privedennaya unitarnaya $K$-teoriya. Prilozheniya k algebraicheskim gruppam”, Matem. sb., 110(152):4(12) (1979), 579–596 | MR | Zbl

[32] V. I. Yanchevskii, “O probleme sopryazhënnosti grupp ratsionalnykh tochek vneshnikh form anizotropnykh grupp tipa $A_n$”, Dokl. NAN Belarusi, 54:3 (2010), 5–7 | MR | Zbl