The Hilbert symbol in multi-dimensional local fields for Lubin–Tate formal groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 20-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper an explicit formula for the Hilbert pairing between the Milnor $K$-group of a multi-dimensional local field and the multi-dimensional Lubin–Tate formal module is derived. This formula is a generalization of such a formula in one-dimensional case. Here we consider the case, where the penultimate residue field is of characteristic zero.
@article{ZNSL_2012_400_a1,
     author = {S. S. Afanas'eva and B. M. Bekker and S. V. Vostokov},
     title = {The {Hilbert} symbol in multi-dimensional local fields for {Lubin{\textendash}Tate} formal groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--49},
     year = {2012},
     volume = {400},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a1/}
}
TY  - JOUR
AU  - S. S. Afanas'eva
AU  - B. M. Bekker
AU  - S. V. Vostokov
TI  - The Hilbert symbol in multi-dimensional local fields for Lubin–Tate formal groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 20
EP  - 49
VL  - 400
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a1/
LA  - ru
ID  - ZNSL_2012_400_a1
ER  - 
%0 Journal Article
%A S. S. Afanas'eva
%A B. M. Bekker
%A S. V. Vostokov
%T The Hilbert symbol in multi-dimensional local fields for Lubin–Tate formal groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 20-49
%V 400
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a1/
%G ru
%F ZNSL_2012_400_a1
S. S. Afanas'eva; B. M. Bekker; S. V. Vostokov. The Hilbert symbol in multi-dimensional local fields for Lubin–Tate formal groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 23, Tome 400 (2012), pp. 20-49. http://geodesic.mathdoc.fr/item/ZNSL_2012_400_a1/

[1] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[2] S. V. Vostokov, “Normennoe sparivanie v formalnykh modulyakh”, Izv. AN SSSR. Ser. matem., 43:4 (1979), 765–794 | MR | Zbl

[3] S. V. Vostokov, “Yavnaya konstruktsiya teorii polei klassov mnogomernogo lokalnogo polya”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 283–308 | MR | Zbl

[4] S. V. Vostokov, O. V. Demchenko, “Yavnaya formula sparivaniya Gilberta dlya formalnykh grupp Khondy”, Zap. nauchn. semin. POMI, 272, 2000, 86–128 | MR | Zbl

[5] A. I. Madunts, “Formalnye gruppy Lyubina–Teita nad koltsom tselykh mnogomernogo lokalnogo polya”, Zap. nauchn. semin. POMI, 281, 2001, 221–226 | MR | Zbl

[6] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. semin. POMI, 272, 2000, 186–196 | MR | Zbl

[7] F. Lorenz, S. Vostokov, “Honda Groups and Explicit Pairings on the Modules of Cartier Curves”, Contemp. Math., 300 (2002), 143–170 | DOI | MR | Zbl

[8] S. V. Vostokov, F. Lorents, “Yavnaya formula simvola Gilberta dlya grupp Khondy v mnogomernom lokalnom pole”, Matem. sb., 194:2 (2003), 3–36 | DOI | MR | Zbl

[9] G. Henniart, “Sur les lois de réciprocité. I”, J. reine angew. Math., 329 (1981), 172–203 | MR

[10] I. B. Fesenko, “Teoriya lokalnykh polei. Lokalnaya teoriya polei klassov. Mnogomernaya lokalnaya teoriya polei klassov”, Algebra i analiz, 4:3 (1992), 1–41 | MR | Zbl

[11] S. V. Vostokov, R. Perlis, “Normennye ryady dlya formalnykh grupp Lyubina–Teita”, Zap. nauchn. semin. POMI, 281, 2001, 105–127 | MR | Zbl