@article{ZNSL_2012_399_a2,
author = {E. A. Hirsch and O. Melanich and S. I. Nikolenko},
title = {Feebly secure cryptographic primitives},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--64},
year = {2012},
volume = {399},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a2/}
}
E. A. Hirsch; O. Melanich; S. I. Nikolenko. Feebly secure cryptographic primitives. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 32-64. http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a2/
[1] E. Allender, “Circuit Complexity before the dawn of the new millennium”, Proceedings of the 16th Conference on Foundations of Software Technology and Theoretical Computer Science, 1996, 1–18 | DOI | MR
[2] N. Blum, “A boolean function requiring $3n$ network size”, Theoretical Computer Science, 28 (1984), 337–345 | DOI | MR | Zbl
[3] A. Davydow, S. I. Nikolenko, “Gate elimination for linear runctions and new feebly secure constructions”, Proceedings of the 6th Computer science symposium in Russia, Lecture Notes in Computer Science, 6651, 2001, 148–161 | DOI | MR
[4] W. Diffie, M. Hellman, “New directions in cryptography”, IEEE Transactions on Information Theory, IT-22 (1976), 644–654 | DOI | MR | Zbl
[5] O. Goldreich, Foundations of Cryptography. Basic Tools, Cambridge University Press, 2001 | MR | Zbl
[6] D. Grigoriev, E. A. Hirsch, K. Pervyshev, “A complete public-key cryptosystem”, Groups, Complexity, and Cryptology, 1:1 (2009), 1–12 | DOI | MR | Zbl
[7] D. Harnik, J. Kilian, M. Naor, O. Reingold, A. Rosen, “On robust combiners for oblivious transfers and other primitives”, Proceedings of EuroCrypt 05, Lecture Notes in Computer Science, 3494, 2005, 96–113 | DOI | MR | Zbl
[8] J. Hastad, Computational Limitations for Small Depth Circuits, MIT Press, Cambridge, MA, 1987 | MR
[9] A. P. Hiltgen, “Constructions of Feebly-One-Way Families of Permutations”, Proc. of AsiaCrypt' 92, 1992, 422–434 | MR
[10] A. P. Hiltgen, Cryptographically relevant contributions to combinatorial complexity theory, ETH Series in Information Processing, 3, eds. J. L. Massey, Hartung–Gorre, Konstanz, 1994
[11] A. P. Hiltgen, “Towards a better understanding of one-wayness: facing linear permutations”, Proceedings of EuroCrypt' 98, Lecture Notes in Computer Science, 1233, 1998, 319–333 | DOI | MR
[12] E. A. Hirsch, S. I. Nikolenko, “A feebly secure trapdoor function”, Proceedings of the 4th Computer Science Symposium in Russia, Lecture Notes in Computer Science, 5675, 2009, 129–142 | DOI | Zbl
[13] K. Iwama O. Lachish, H. Morizumi, R. Raz, “An explicit lower bound of $5n-o(n)$ for boolean circuits”, Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, 399–408 | MR
[14] E. A. Lamagna, J. E. Savage, On the logical complexity of symmetric switching functions in monotone and complete bases, Tech. rep., Brown University, Rhode Island, July 1973
[15] L. A. Levin, “One-way functions and pseudorandom generators”, Combinatorica, 7:4 (1987), 357–363 | DOI | MR | Zbl
[16] J. Massey, The difficulty with difficulty, A guide to the transparencies from the EUROCRYPT' 96 IACR distinguished lecture, 1996
[17] O. Melanich, Nonlinear feebly secure cryptographic primitives, PDMI preprint, 12/2009
[18] W. J. Paul, “A $2.5n$ lower bound on the combinational complexity of boolean functions”, SIAM Journal of Computing, 6 (1977), 427–443 | DOI | MR | Zbl
[19] A. A. Razborov, “Bounded arithmetic and lower bounds”, Feasible Mathematics, v. II, Progress in Computer Science and Applied Logic, 13, eds. P. Clote, J. Remmel, Birkhäuser, 1995, 344–386 | MR | Zbl
[20] R. L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures and public-key cryptosystems”, Communications of the ACM, 21:2 (1978), 120–126 | DOI | MR | Zbl
[21] J. E. Savage, The Complexity of Computing, Wiley, New York, 1976 | MR | Zbl
[22] C. E. Shannon, “Communication theory of secrecy systems”, Bell System Technical Journal, 28:4 (1949), 656–717 | DOI | MR
[23] L. Stockmeyer, “On the combinational complexity of certain symmetric Boolean functions”, Mathematical Systems Theory, 10 (1977), 323–326 | DOI | MR
[24] G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications”, Journal of the IEEE, 55 (1926), 109–115
[25] I. Wegener, The Complexity of Boolean Functions, B. G. Teubner; John Wiley Sons, 1987 | MR | Zbl