Optimal heuristic algorithms for the image of an injective function
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 15-31

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of optimal algorithms is not known for any decision problem in $\mathbf{NP}\setminus\mathbf{P}$. We consider the problem of testing the membership in the image of an injective function. We construct optimal heuristic algorithms for this problem in both randomized and deterministic settings (a heuristic algorithm can err on a small fraction $\frac1d$ of the inputs; the parameter $d$ is given to it as an additional input). Thus for this problem we improve an earlier construction of an optimal acceptor (that is optimal on the negative instances only) and also give a deterministic version.
@article{ZNSL_2012_399_a1,
     author = {E. A. Hirsch and D. M. Itsykson and V. O. Nikolaenko and A. V. Smal},
     title = {Optimal heuristic algorithms for the image of an injective function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--31},
     publisher = {mathdoc},
     volume = {399},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a1/}
}
TY  - JOUR
AU  - E. A. Hirsch
AU  - D. M. Itsykson
AU  - V. O. Nikolaenko
AU  - A. V. Smal
TI  - Optimal heuristic algorithms for the image of an injective function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 15
EP  - 31
VL  - 399
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a1/
LA  - en
ID  - ZNSL_2012_399_a1
ER  - 
%0 Journal Article
%A E. A. Hirsch
%A D. M. Itsykson
%A V. O. Nikolaenko
%A A. V. Smal
%T Optimal heuristic algorithms for the image of an injective function
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 15-31
%V 399
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a1/
%G en
%F ZNSL_2012_399_a1
E. A. Hirsch; D. M. Itsykson; V. O. Nikolaenko; A. V. Smal. Optimal heuristic algorithms for the image of an injective function. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 15-31. http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a1/