@article{ZNSL_2012_399_a0,
author = {I. A. Bliznets},
title = {A new upper bound for $(n,3)${-MAX-SAT}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--14},
year = {2012},
volume = {399},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a0/}
}
I. A. Bliznets. A new upper bound for $(n,3)$-MAX-SAT. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part X, Tome 399 (2012), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2012_399_a0/
[1] J. Chen, I. Kanj, “Improved exact algorithms for Max-Sat”, Lect. Notes Computer Sci., 2286, 2002, 98–119 | DOI | MR
[2] H. Timon, 3-SAT Faster and Simpler – Unique-SAT Bounds for PPSZ Hold in General, 2011, arXiv: 1103.2165 | MR
[3] R. A. Moser, D. Scheder, “A full derandomization of Schöning's $k$-SAT algorithm”, Proceedings of the 43rd annual ACM Symposium on Theory of Computing, San Jose, California, USA, 2011, 245–252 | MR | Zbl
[4] S. S. Fedin, A. S. Kulikov, “Automated proofs of upper bounds on the running time of splitting algorithms”, Lect Notes Computer Sci., 3162, Springer, 2004, 248–259 | DOI | Zbl
[5] A. Kulikov, “Automated generation of simplification rules for SAT and MAXSAT”, Lect Notes Computer Sci., 3569, Springer, 2005, 43–59 | MR
[6] Venkatesh Raman, B. Ravikumar, S. Srinivasa Rao, “A simplified NP-complete MAXSAT problem”, Information Processing Lett., 65:1 (1998), 1–6 | DOI | MR
[7] J. Edmonds, “Paths, Trees, and Flowers”, Modern Birkhäuser Classics, Birkhüser Boston, 1987, 361–379
[8] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, U. Schöning, “A deterministic $(2-2/(k+1))^n$ algorithm for $k$-SAT based on local search”, Theor. Computer Sci., 289:1 (2002), 69–83 | DOI | MR | Zbl
[9] D. Scheder, “Guided search and a faster deterministic algorithm for 3-SAT”, Lect. Notes Computer Sci., 4957, Springer, Berlin–Heidelberg, 2008, 60–71 | DOI | MR | Zbl
[10] W. Ryan, “A new algorithm for optimal 2-constraint satisfaction and its implications”, Theor. Computer Sci., 348:2 (2005), 357–365 | DOI | MR | Zbl
[11] A. Kulikov, K. Kutzkov, “New bounds for MAX-SAT by Clause Learning”, Lect. Notes Computer Sci., 4649, Springer, Berlin–Heidelberg, 2007, 194–204 | DOI | Zbl
[12] E. Dantsin, A. Wolpert, “MAX-SAT for formulas with constant Clause density can be solved faster than in $O^*(2^n)$ time”, Lect. Notes Computer Sci., 4121, Springer, Berlin–Heidelberg, 2006, 266–276 | DOI | MR | Zbl
[13] W. Magnus, “An algorithm for the SAT problem for formulae of linear length”, Lect. Notes Computer Sci., 3669, Springer, Berlin–Heidelberg, 2005, 107–118 | DOI | MR | Zbl