On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 179-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Various representations are derived for the emptiness formation probability (a nonlocal correlation function describing the probability of a ferroelectric order) in the six-vertex model with domain wall boundary conditions in the case of weights satisfying the free-fermion condition. Starting from the known representation in terms of a multiple integral, the emptiness formation probability is expressed in terms of Hankel determinants and Fredholm ones. The nonlinear differential equations for this correlation function are also obtained. In particular, among these equations are those for the tau-functions of Toda chains, both for the finite and the semi-infinite ones.
@article{ZNSL_2012_398_a9,
     author = {A. G. Pronko},
     title = {On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--208},
     year = {2012},
     volume = {398},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/}
}
TY  - JOUR
AU  - A. G. Pronko
TI  - On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 179
EP  - 208
VL  - 398
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/
LA  - ru
ID  - ZNSL_2012_398_a9
ER  - 
%0 Journal Article
%A A. G. Pronko
%T On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 179-208
%V 398
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/
%G ru
%F ZNSL_2012_398_a9
A. G. Pronko. On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 179-208. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/

[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[2] A. G. Izergin, “Statsumma shestivershinnoi modeli v konechnom ob'eme”, DAN, 297:2 (1987), 331–334 | MR

[3] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl

[4] V. E. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053–7066 | DOI | MR | Zbl

[5] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62 (2000), 3411–3418 | DOI | MR

[6] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, “Boundary polarization in the six-vertex model”, Phys. Rev. E, 65 (2002), 026126 | DOI | MR

[7] P. Bleher, V. Fokin, “Exact solution of the six-vertex model with domain wall boundary conditions. Disordered phase”, Commun. Math. Phys., 268 (2006), 223–284 | DOI | MR | Zbl

[8] F. Colomo, A. G. Pronko, “Emptiness formation probability in the domain-wall six-vertex model”, Nucl. Phys. B, 798 (2008), 340–362 | DOI | MR | Zbl

[9] F. Colomo, A. G. Pronko, “The Arctic Circle revisited”, Contemp. Math., 458 (2008), 361–376 | DOI | MR | Zbl

[10] F. Colomo, A. G. Pronko, “The limit shape of large alternating-sign matrices”, SIAM J. Discrete Math., 24 (2010), 1558–1571 | DOI | MR | Zbl

[11] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl

[12] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings”, J. Algebraic Combin., 1 (1992), 111–132, 219–234 | DOI | MR | Zbl

[13] H. Cohn, N. Elkies, J. Propp, “Local statistics for random domino tilings of the Aztec diamond”, Duke Math. J., 85 (1996), 117–166 | DOI | MR | Zbl

[14] W. Jockush, J. Propp, P. Shor, Random domino tilings and the arctic circle theorem, arXiv: math/9801068

[15] K. Johansson, “The arctic circle boundary and the Airy process”, Ann. Probab., 33 (2005), 1–30 | DOI | MR | Zbl

[16] P. L. Ferrari, H. Spohn, “Domino tilings and the six-vertex model at its free fermion point”, J. Phys. A, 39 (2006), 10297–10306 | DOI | MR | Zbl

[17] R. Kenyon, A. Okounkov, “Limit shapes and the complex Burgers equation”, Acta Math., 199 (2007), 263–302 | DOI | MR | Zbl

[18] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. of Math., 163 (2006), 1019–1056 | DOI | MR | Zbl

[19] R. Kenyon, Lectures on Dimers, Preprint, 2009, arXiv: 0910.3129 | MR

[20] H. Au-Yang, J. H. H. Perk, “Critical correlations in a $Z$-invariant inhomogeneous Ising model”, Physica A, 144 (1987), 44–104 | DOI | MR

[21] K. Sogo, “Time-dependent orthogonal polynomials and theory of soliton – applications to matrix model, vertex model and level statistics”, J. Phys. Soc. Japan, 62 (1993), 1887–1894 | DOI | MR | Zbl

[22] A. G. Izergin, E. Karyalainen, N. A. Kitanin, “Integriruemye uravneniya dlya statsummy shestivershinnoi modeli”, Zap. nauchn. semin. POMI, 245, 1997, 207–215 | MR | Zbl

[23] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[24] Al. R. Kavalov, R. L. Mkrtchyan, L. A. Zurabyan, “Random matrices with discrete spectrum and finite Toda chains”, Mod. Phys. Lett. A, 6:39 (1991), 3627–3633 | DOI | MR | Zbl

[25] G. Szegö, Orthogonal polinomials, American Colloquium Publications, 23, 4 ed., American Mathematical Society, Providence, RI, 1975 | MR

[26] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[27] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation function”, Int. J. Mod. Phys. B, 4 (1990), 1003–1037 | DOI | MR | Zbl

[28] A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “Matrichnaya zadana Rimana–Gilberta i differentsialnye uravneniya dlya korrelyatsionnykh funktsii $XXO$ tsepochki Geizenberga”, Algebra i analiz, 6:2 (1994), 138–151 | MR | Zbl

[29] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl