On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 179-208
Voir la notice de l'article provenant de la source Math-Net.Ru
Various representations are derived for the emptiness formation probability (a nonlocal correlation function describing the probability of a ferroelectric order) in the six-vertex model with domain wall boundary conditions in the case of weights satisfying the free-fermion condition. Starting from the known representation in terms of a multiple integral, the emptiness formation probability is expressed in terms of Hankel determinants and Fredholm ones. The nonlinear differential equations for this correlation function are also obtained. In particular, among these equations are those for the tau-functions of Toda chains, both for the finite and the semi-infinite ones.
@article{ZNSL_2012_398_a9,
author = {A. G. Pronko},
title = {On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--208},
publisher = {mathdoc},
volume = {398},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/}
}
TY - JOUR AU - A. G. Pronko TI - On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 179 EP - 208 VL - 398 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/ LA - ru ID - ZNSL_2012_398_a9 ER -
%0 Journal Article %A A. G. Pronko %T On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions %J Zapiski Nauchnykh Seminarov POMI %D 2012 %P 179-208 %V 398 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/ %G ru %F ZNSL_2012_398_a9
A. G. Pronko. On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 179-208. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/