@article{ZNSL_2012_398_a9,
author = {A. G. Pronko},
title = {On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--208},
year = {2012},
volume = {398},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/}
}
TY - JOUR AU - A. G. Pronko TI - On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 179 EP - 208 VL - 398 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/ LA - ru ID - ZNSL_2012_398_a9 ER -
A. G. Pronko. On the emptiness formation probability in the free-fermion six-vertex model with domain wall boundary conditions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 179-208. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a9/
[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[2] A. G. Izergin, “Statsumma shestivershinnoi modeli v konechnom ob'eme”, DAN, 297:2 (1987), 331–334 | MR
[3] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl
[4] V. E. Korepin, P. Zinn-Justin, “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A, 33 (2000), 7053–7066 | DOI | MR | Zbl
[5] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62 (2000), 3411–3418 | DOI | MR
[6] N. M. Bogoliubov, A. V. Kitaev, M. B. Zvonarev, “Boundary polarization in the six-vertex model”, Phys. Rev. E, 65 (2002), 026126 | DOI | MR
[7] P. Bleher, V. Fokin, “Exact solution of the six-vertex model with domain wall boundary conditions. Disordered phase”, Commun. Math. Phys., 268 (2006), 223–284 | DOI | MR | Zbl
[8] F. Colomo, A. G. Pronko, “Emptiness formation probability in the domain-wall six-vertex model”, Nucl. Phys. B, 798 (2008), 340–362 | DOI | MR | Zbl
[9] F. Colomo, A. G. Pronko, “The Arctic Circle revisited”, Contemp. Math., 458 (2008), 361–376 | DOI | MR | Zbl
[10] F. Colomo, A. G. Pronko, “The limit shape of large alternating-sign matrices”, SIAM J. Discrete Math., 24 (2010), 1558–1571 | DOI | MR | Zbl
[11] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl
[12] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings”, J. Algebraic Combin., 1 (1992), 111–132, 219–234 | DOI | MR | Zbl
[13] H. Cohn, N. Elkies, J. Propp, “Local statistics for random domino tilings of the Aztec diamond”, Duke Math. J., 85 (1996), 117–166 | DOI | MR | Zbl
[14] W. Jockush, J. Propp, P. Shor, Random domino tilings and the arctic circle theorem, arXiv: math/9801068
[15] K. Johansson, “The arctic circle boundary and the Airy process”, Ann. Probab., 33 (2005), 1–30 | DOI | MR | Zbl
[16] P. L. Ferrari, H. Spohn, “Domino tilings and the six-vertex model at its free fermion point”, J. Phys. A, 39 (2006), 10297–10306 | DOI | MR | Zbl
[17] R. Kenyon, A. Okounkov, “Limit shapes and the complex Burgers equation”, Acta Math., 199 (2007), 263–302 | DOI | MR | Zbl
[18] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. of Math., 163 (2006), 1019–1056 | DOI | MR | Zbl
[19] R. Kenyon, Lectures on Dimers, Preprint, 2009, arXiv: 0910.3129 | MR
[20] H. Au-Yang, J. H. H. Perk, “Critical correlations in a $Z$-invariant inhomogeneous Ising model”, Physica A, 144 (1987), 44–104 | DOI | MR
[21] K. Sogo, “Time-dependent orthogonal polynomials and theory of soliton – applications to matrix model, vertex model and level statistics”, J. Phys. Soc. Japan, 62 (1993), 1887–1894 | DOI | MR | Zbl
[22] A. G. Izergin, E. Karyalainen, N. A. Kitanin, “Integriruemye uravneniya dlya statsummy shestivershinnoi modeli”, Zap. nauchn. semin. POMI, 245, 1997, 207–215 | MR | Zbl
[23] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[24] Al. R. Kavalov, R. L. Mkrtchyan, L. A. Zurabyan, “Random matrices with discrete spectrum and finite Toda chains”, Mod. Phys. Lett. A, 6:39 (1991), 3627–3633 | DOI | MR | Zbl
[25] G. Szegö, Orthogonal polinomials, American Colloquium Publications, 23, 4 ed., American Mathematical Society, Providence, RI, 1975 | MR
[26] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[27] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation function”, Int. J. Mod. Phys. B, 4 (1990), 1003–1037 | DOI | MR | Zbl
[28] A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “Matrichnaya zadana Rimana–Gilberta i differentsialnye uravneniya dlya korrelyatsionnykh funktsii $XXO$ tsepochki Geizenberga”, Algebra i analiz, 6:2 (1994), 138–151 | MR | Zbl
[29] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl