Fan, splint, and branching rules
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 162-178
Cet article a éte moissonné depuis la source Math-Net.Ru
Splint of root system for simple Lie algebra appears naturally in studies of (regular) embeddings of reductive subalgebras. Splint can be used to construct branching rules. We demonstrate that splint properties implementation drastically simplify calculations of branching coefficients.
@article{ZNSL_2012_398_a8,
author = {V. D. Lyakhovsky and A. A. Nazarov},
title = {Fan, splint, and branching rules},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--178},
year = {2012},
volume = {398},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a8/}
}
V. D. Lyakhovsky; A. A. Nazarov. Fan, splint, and branching rules. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 162-178. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a8/
[1] D. A. Richter, Splints of classical root systems, Arxiv preprint, 2008, arXiv: 0807.0640 | MR
[2] V. Lyakhovsky, S. Y. Melnikov, “Recursion relations and branching rules for simple Lie algebras”, J. Phys. A: Math. General, 29:5 (1996), 1075–1088, arXiv: q-alg/9505006 | DOI | MR | Zbl
[3] V. Lyakhovsky, A. Nazarov, “Recursive algorithm and branching for nonmaximal embeddings”, J. Phys. A: Math. Theor., 44:7 (2011), 075205, arXiv: 1007.0318[math.RT] | DOI | MR | Zbl
[4] M. Ilyin, P. Kulish, V. Lyakhovsky, “On a property of branching coefficients for affine Lie algebras”, Algebra Analiz, 21:2 (2009), 52–70, arXiv: 0812.2124[math.RT] | MR | Zbl
[5] J. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1997 | MR