Parametric Painlev\'e equations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 145-161
Voir la notice de l'article provenant de la source Math-Net.Ru
The parametric Painlevé equations are those ODEs whose general solutions can be presented in the parametric form in terms of the Painlevé functions. Most of these ODEs do not possess the Painlevé property. By considering similarity solutions of the short pulse equation and its decoupled generalization we derive a non-trivial example of the parametric Painlevé equation related with the third Painlevé equation. We also discuss some analytic properties of this equation describing the structure of movable singularities.
@article{ZNSL_2012_398_a7,
author = {A. V. Kitaev},
title = {Parametric {Painlev\'e} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--161},
publisher = {mathdoc},
volume = {398},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a7/}
}
A. V. Kitaev. Parametric Painlev\'e equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 145-161. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a7/