Parametric Painlevé equations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 145-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The parametric Painlevé equations are those ODEs whose general solutions can be presented in the parametric form in terms of the Painlevé functions. Most of these ODEs do not possess the Painlevé property. By considering similarity solutions of the short pulse equation and its decoupled generalization we derive a non-trivial example of the parametric Painlevé equation related with the third Painlevé equation. We also discuss some analytic properties of this equation describing the structure of movable singularities.
@article{ZNSL_2012_398_a7,
     author = {A. V. Kitaev},
     title = {Parametric {Painlev\'e} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--161},
     year = {2012},
     volume = {398},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a7/}
}
TY  - JOUR
AU  - A. V. Kitaev
TI  - Parametric Painlevé equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 145
EP  - 161
VL  - 398
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a7/
LA  - en
ID  - ZNSL_2012_398_a7
ER  - 
%0 Journal Article
%A A. V. Kitaev
%T Parametric Painlevé equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 145-161
%V 398
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a7/
%G en
%F ZNSL_2012_398_a7
A. V. Kitaev. Parametric Painlevé equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 145-161. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a7/

[1] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196 (2004), 90–105 | DOI | MR | Zbl

[2] H. Flaschka, A. C. Newell, “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl

[3] A. S. Fokas, D. Yang, On a novel class of integrable ODEs related to the Painlevé equations, Archive Preprint, 26 Sep. 2010, arXiv: 1009.5125v1[nlin.SI]

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944 | MR | Zbl

[5] A. R. Its, “ ‘Isomonodromic’ solutions of equations of zero curvature”, Izv. Akad. Nauk SSSR. Ser. Mat., 49:3 (1985), 530–565 | MR | Zbl

[6] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR | Zbl

[7] N. Joshi, A. V. Kitaev, P. A. Treharne, “On the linearization of the Painlevé III-VI equations and reductions of the three-wave resonant system”, J. Math. Phys., 48 (2007), 103512, 42 pp. | DOI | MR | Zbl

[8] A. V. Kitaev, “The method of isomonodromic deformations and the asymptotics of the solutions of the “complete” third Painlevé equation”, Mat. Sb. (N.S.), 134(176):3 (1987), 421–444 | MR | Zbl

[9] A. D. Polyanin, V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[10] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Jpn., 74 (2005), 239–241 | DOI | MR | Zbl

[11] A. Sakovich, S. Sakovich, “On transformations of the Rabello equations”, SIGMA, 3 (2007), 086 | MR | Zbl

[12] M. Wadati, K. Konno, Y. H. Ichikawa, “New integrable nonlinear evolution equations”, J. Phys. Soc. Japan, 47 (1979), 1698–1700 | DOI | MR

[13] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30 (1973), 1262–1264 | DOI | MR

[14] J. G. Kingston, C. R. Rogers, “Reciprocal Bäclund Transformations of Conservation Laws”, Phys. Lett. A, 92:6 (1982), 261–264 | DOI | MR