@article{ZNSL_2012_398_a6,
author = {V. S. Kapitonov and A. G. Pronko},
title = {Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--144},
year = {2012},
volume = {398},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/}
}
TY - JOUR AU - V. S. Kapitonov AU - A. G. Pronko TI - Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 125 EP - 144 VL - 398 UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/ LA - ru ID - ZNSL_2012_398_a6 ER -
V. S. Kapitonov; A. G. Pronko. Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 125-144. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/
[1] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing, 1976 | MR | Zbl
[2] D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[3] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165 | MR | Zbl
[4] Al. Borodin, V. Gorin, E. M. Rains, “$q$-Distributions on boxed plane partitions”, Selecta Math. (N.S.), 16 (2010), 731–789 | DOI | MR | Zbl
[5] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 | DOI | MR | Zbl
[6] N. M. Bogolyubov, “Chetyrekhvershinnaya model i sluchainye ukladki”, Teor. mat. fiz., 155:1 (2008), 25–38 | DOI | MR | Zbl
[7] V. S. Kapitonov, A. G. Pronko, “Pyativershinnaya model i ploskie razbieniya v yaschike”, Zap. nauchn. semin. POMI, 360, 2008, 162–179 | MR | Zbl
[8] F. A. Berezin, Metod vtorichnogo kvantovaniya, 2-oe izd. (dop.), Nauka, M., 1986 | MR | Zbl
[9] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[10] D. S. Moak, “The $q$-analogue of the Laguerre polynomials”, J. Math. Anal. Appl., 81 (1981), 20–47 | DOI | MR | Zbl
[11] R. Koekoek, “Generalizations of a $q$-analogue of Laguerre polynomials”, J. Approx. Theory, 69 (1992), 55–83 | DOI | MR | Zbl
[12] S. G. Moreno, E. M. García-Caballero, “$q$-Sobolev orthogonality of the $q$-Laguerre polynomials $\{L_n^{(-N)}(\cdot;q)\}_{n=0}^\infty$ for positive integers $N$”, J. Korean Math. Soc., 48 (2011), 913–926 | DOI | MR | Zbl
[13] G. Szegö, Orthogonal Polinomials, American Colloquium Publications, 23, 4th edn., American Mathematical Society, Providence, RI, 1975 | MR
[14] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995 | MR | Zbl