Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 125-144

Voir la notice de l'article provenant de la source Math-Net.Ru

The five-vertex model on a square lattice with fixed boundary conditions, which corresponds to the weighted (with the weight $q$ per elementary cube) enumerations of boxed plane partition is considered. The one-point correlation function of the model describing the probability of a given state on an edge (polarization) is calculated. This generalises the similar result obtained previously by the authors for the unweighed (weighted with the weight $q=1$) enumerations of plane partitions.
@article{ZNSL_2012_398_a6,
     author = {V. S. Kapitonov and A. G. Pronko},
     title = {Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--144},
     publisher = {mathdoc},
     volume = {398},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/}
}
TY  - JOUR
AU  - V. S. Kapitonov
AU  - A. G. Pronko
TI  - Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 125
EP  - 144
VL  - 398
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/
LA  - ru
ID  - ZNSL_2012_398_a6
ER  - 
%0 Journal Article
%A V. S. Kapitonov
%A A. G. Pronko
%T Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 125-144
%V 398
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/
%G ru
%F ZNSL_2012_398_a6
V. S. Kapitonov; A. G. Pronko. Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 125-144. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/