Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 125-144
Voir la notice de l'article provenant de la source Math-Net.Ru
The five-vertex model on a square lattice with fixed boundary conditions, which corresponds to the weighted (with the weight $q$ per elementary cube) enumerations of boxed plane partition is considered. The one-point correlation function of the model describing the probability of a given state on an edge (polarization) is calculated. This generalises the similar result obtained previously by the authors for the unweighed (weighted with the weight $q=1$) enumerations of plane partitions.
@article{ZNSL_2012_398_a6,
author = {V. S. Kapitonov and A. G. Pronko},
title = {Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--144},
publisher = {mathdoc},
volume = {398},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/}
}
TY - JOUR AU - V. S. Kapitonov AU - A. G. Pronko TI - Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 125 EP - 144 VL - 398 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/ LA - ru ID - ZNSL_2012_398_a6 ER -
V. S. Kapitonov; A. G. Pronko. Weighted enumerations of boxed plane partitions and inhomogeneous five-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 125-144. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a6/