Differential equations for the elementary 3-symmetric Chebyshev polynomials
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 64-86
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue the study of “composed model of generalized oscillator” and related simplest 3-symmetric Chebyshev polynomials. For this polynomials we obtain the second order differential equations which are of the fuchsian type. These equations have 13 singular points. The obtained results gives (in the considered simplest case) the answer on the more general question. What changes appears in the differential equations for polynomials of the Askey–Wilson scheme when the Jacobi matrix related with these polynomials was distributed by diagonal matrix with complex diagonal.
@article{ZNSL_2012_398_a3,
author = {V. V. Borzov and E. V. Damaskinsky},
title = {Differential equations for the elementary 3-symmetric {Chebyshev} polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {64--86},
publisher = {mathdoc},
volume = {398},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a3/}
}
TY - JOUR AU - V. V. Borzov AU - E. V. Damaskinsky TI - Differential equations for the elementary 3-symmetric Chebyshev polynomials JO - Zapiski Nauchnykh Seminarov POMI PY - 2012 SP - 64 EP - 86 VL - 398 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a3/ LA - ru ID - ZNSL_2012_398_a3 ER -
V. V. Borzov; E. V. Damaskinsky. Differential equations for the elementary 3-symmetric Chebyshev polynomials. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 64-86. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a3/