@article{ZNSL_2012_398_a10,
author = {A. O. Smirnov},
title = {Elliptic breather for nonlinear {Shr\"odinger} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {209--222},
year = {2012},
volume = {398},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a10/}
}
A. O. Smirnov. Elliptic breather for nonlinear Shrödinger equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 209-222. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a10/
[1] Eur. Phys. J. Special Topics, 185 (2010)
[2] N. Akhmediev, A. Ankiewicz, M. Taki, “Waves that appear from nowhere and disapear without a trace”, Phys. Lett. A, 373 (2009), 675–678 | DOI | MR | Zbl
[3] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nature Physics, 6 (2010), 790–795 | DOI
[4] Z. Yan, Financial rogue waves appearing in the coupled nonlinear volatility and option pricing model, Preprint, 2011, arXiv: 1101.3107v1
[5] N. N. Akhmediev, V. I. Korneev, “Modulyatsionnaya neustoichivost i periodicheskie resheniya nelineinogo uravneniya Shredingera”, TMF, 69:2 (1986), 189–194 | MR | Zbl
[6] N. N. Akhmediev, A. Ankevich, Solitony, Fizmatlit, M., 2003
[7] A. O. Smirnov, “Ob odnom klasse ellipticheskikh potentsialov operatora Diraka”, Mat. sb., 188:1 (1997), 109–128 | DOI | MR | Zbl
[8] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[9] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Gostekhizdat, M., 1948
[10] A. O. Smirnov, “Konechnozonnye resheniya abelevoi tsepochki Tody roda 4 i 5 v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21 | MR
[11] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega-de Friza”, Mat. sb., 185:8 (1994), 103–114 | MR | Zbl
[12] A. O. Smirnov, “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, TMF, 107:2 (1996), 188–200 | DOI | MR | Zbl