Elliptic breather for nonlinear Shrödinger equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 209-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Two-phase elliptic solution of the nonlinear Shrödinger equation is constructed. The conditions on the parameters for the periodic rogue wave solution are given. It is shown that degenerations of this solution lead to Akhmediev breather and to Peregrin soliton.
@article{ZNSL_2012_398_a10,
     author = {A. O. Smirnov},
     title = {Elliptic breather for nonlinear {Shr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--222},
     year = {2012},
     volume = {398},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a10/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - Elliptic breather for nonlinear Shrödinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 209
EP  - 222
VL  - 398
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a10/
LA  - ru
ID  - ZNSL_2012_398_a10
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T Elliptic breather for nonlinear Shrödinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 209-222
%V 398
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a10/
%G ru
%F ZNSL_2012_398_a10
A. O. Smirnov. Elliptic breather for nonlinear Shrödinger equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 209-222. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a10/

[1] Eur. Phys. J. Special Topics, 185 (2010)

[2] N. Akhmediev, A. Ankiewicz, M. Taki, “Waves that appear from nowhere and disapear without a trace”, Phys. Lett. A, 373 (2009), 675–678 | DOI | MR | Zbl

[3] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nature Physics, 6 (2010), 790–795 | DOI

[4] Z. Yan, Financial rogue waves appearing in the coupled nonlinear volatility and option pricing model, Preprint, 2011, arXiv: 1101.3107v1

[5] N. N. Akhmediev, V. I. Korneev, “Modulyatsionnaya neustoichivost i periodicheskie resheniya nelineinogo uravneniya Shredingera”, TMF, 69:2 (1986), 189–194 | MR | Zbl

[6] N. N. Akhmediev, A. Ankevich, Solitony, Fizmatlit, M., 2003

[7] A. O. Smirnov, “Ob odnom klasse ellipticheskikh potentsialov operatora Diraka”, Mat. sb., 188:1 (1997), 109–128 | DOI | MR | Zbl

[8] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[9] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Gostekhizdat, M., 1948

[10] A. O. Smirnov, “Konechnozonnye resheniya abelevoi tsepochki Tody roda 4 i 5 v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21 | MR

[11] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega-de Friza”, Mat. sb., 185:8 (1994), 103–114 | MR | Zbl

[12] A. O. Smirnov, “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, TMF, 107:2 (1996), 188–200 | DOI | MR | Zbl