Exactly solvable models of quantum nonlinear optics
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 26-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There are many models in quantum nonlinear optics which are exactly solvable and permit to describe physical phenomena beyand perturbation theory. It is pointed out that variety of these models can be solved in the framework of the quantum inverse scattering method.
@article{ZNSL_2012_398_a1,
     author = {N. M. Bogoliubov and P. P. Kulish},
     title = {Exactly solvable models of quantum nonlinear optics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--54},
     year = {2012},
     volume = {398},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a1/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
AU  - P. P. Kulish
TI  - Exactly solvable models of quantum nonlinear optics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 26
EP  - 54
VL  - 398
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a1/
LA  - ru
ID  - ZNSL_2012_398_a1
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%A P. P. Kulish
%T Exactly solvable models of quantum nonlinear optics
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 26-54
%V 398
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a1/
%G ru
%F ZNSL_2012_398_a1
N. M. Bogoliubov; P. P. Kulish. Exactly solvable models of quantum nonlinear optics. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 26-54. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a1/

[1] L. D. Faddeev, L. A. Takhtadzhyan, Usp. Mat. Nauk, 34:5 (1979), 13 | MR

[2] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, Teor. Mat. Fiz., 40:2 (1979), 194 | MR

[3] L. D. Faddeev, “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Math. C, 1 (1980), 107–160

[4] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect Notes Phys., 151, 1982, 61–119 | DOI | MR | Zbl

[5] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[6] E. T. Jaynes, F. W. Cummings, Proc. IEEE, 51 (1963), 89 | DOI

[7] I. Rabi, Phys. Rev., 49 (1936), 324 | DOI | Zbl

[8] D. Braak, Phys. Rev., 107 (2011), 100401

[9] M. Tavis, F. W. Cummings, Phys. Rev., 170 (1968), 379 | DOI

[10] M. Goden, Volnovaya funktsiya Bete, Mir, Moskva, 1987 | MR

[11] R. W. Richardson, J. Math. Phys., 9 (1968), 1327 | DOI

[12] L. Amico, A. Di Lorenzo, A. Osterloh, Nucl. Phys. B, 614 (2001), 449 | DOI | MR | Zbl

[13] M. Chaichian, D. Ellinas, P. P. Kulish, Phys. Rev. Lett., 65 (1990), 980 | DOI | MR | Zbl

[14] P. P. Kulish, E. V. Damaskinsky, J. Phys. A, 23 (1990), L415 | DOI | MR | Zbl

[15] O. Babelon, D. Talalaev, J. Stat. Mech., 2007 (2007), P06013 | DOI | MR

[16] M. O. Skalli, M. S. Zubairi, Kvantovaya optika, Fizmatlit, Moskva, 2003

[17] R. H. Dicke, Phys. Rev., 93 (1954), 99 | DOI | Zbl

[18] V. N. Popov, V. S. Yarunin, Collective Effects in Quantum Statistics of Radiation and Matter, Kluwer, Dordrecht, 1988

[19] N. M. Bogoliubov, R. K. Bullough, J. Timonen, J. Phys. A, 29 (1996), 6305 | DOI | MR | Zbl

[20] V. I. Rupasov, V. I. Yudson, ZhETF, 86 (1984), 819 | MR

[21] E. Lieb, W. Liniger, Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl

[22] V. Ketterle, UFN, 173:12 (2003), 1339 | DOI

[23] N. N. Bogolyubov, Izv. AN SSSR, 11 (1947), 77 | MR

[24] J. Dukelsky, P. Schuck, Phys. Rev. Lett., 86 (2001), 4206

[25] S. E. Pollack et al., Phys. Rev. Lett., 102 (2009), 090402 | DOI

[26] E. Haller et al., Science, 325 (2009), 1224 | DOI

[27] P. P. Kulish, Lett. Math. Phys., 5 (1981), 191 | DOI | MR | Zbl

[28] V. S. Gerdjikov, M. Ivanov, P. P. Kulish, J. Math. Phys., 25 (1984), 25 | DOI | MR | Zbl

[29] N. M. Bogoliubov, R. K. Bullough, G. D. Pang, Phys. Rev. B, 47 (1993), 11495 | DOI

[30] N. M. Bogoliubov, R. K. Bullough, J. Timonen, Phys. Rev. Lett., 72 (1994), 3933 | DOI | MR | Zbl

[31] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl

[32] N. Bogoliubov, J. Timonen, Philosophical Transactions A, 369 (2011), 1319 | DOI | MR | Zbl

[33] N. M. Bogoliubov, A. V. Rybin, J. Timonen, J. Phys. A, 27 (1994), L363 | DOI | MR | Zbl

[34] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, Moskva, 1985 | MR