Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 5-25

Voir la notice de l'article provenant de la source Math-Net.Ru

The exactly solvable totally asymmetric models of the low dimensional non-equilibrium physics on a ring, namely the totally asymmetric simple exclusion process and the totally asymmetric simple zero range process, are considered. The Quantum Inverse Method allows to calculate the scalar products of the state vectors of the models and to represent the answers in the determinantal form. It is shown that the eigenvectors of the models form a complete orthogonal basis. The projections of the state vectors on a stationary states, time independent ones, are studied.
@article{ZNSL_2012_398_a0,
     author = {N. M. Bogoliubov},
     title = {Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--25},
     publisher = {mathdoc},
     volume = {398},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
TI  - Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 5
EP  - 25
VL  - 398
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/
LA  - ru
ID  - ZNSL_2012_398_a0
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%T Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 5-25
%V 398
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/
%G ru
%F ZNSL_2012_398_a0
N. M. Bogoliubov. Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/