Scalar products of the state vectors in the totally asymmetric exactly solvable models on a ring
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 5-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The exactly solvable totally asymmetric models of the low dimensional non-equilibrium physics on a ring, namely the totally asymmetric simple exclusion process and the totally asymmetric simple zero range process, are considered. The Quantum Inverse Method allows to calculate the scalar products of the state vectors of the models and to represent the answers in the determinantal form. It is shown that the eigenvectors of the models form a complete orthogonal basis. The projections of the state vectors on a stationary states, time independent ones, are studied.
@article{ZNSL_2012_398_a0,
     author = {N. M. Bogoliubov},
     title = {Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--25},
     year = {2012},
     volume = {398},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/}
}
TY  - JOUR
AU  - N. M. Bogoliubov
TI  - Scalar products of the state vectors in the totally asymmetric exactly solvable models on a ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2012
SP  - 5
EP  - 25
VL  - 398
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/
LA  - ru
ID  - ZNSL_2012_398_a0
ER  - 
%0 Journal Article
%A N. M. Bogoliubov
%T Scalar products of the state vectors in the totally asymmetric exactly solvable models on a ring
%J Zapiski Nauchnykh Seminarov POMI
%D 2012
%P 5-25
%V 398
%U http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/
%G ru
%F ZNSL_2012_398_a0
N. M. Bogoliubov. Scalar products of the state vectors in the totally asymmetric exactly solvable models on a ring. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/

[1] T. Liggett, Markovskie protsessy s lokalnym vzaimodeistviem, Mir, Moskva, 1989 | MR | Zbl

[2] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer, Berlin, 1991 | Zbl

[3] G. Schütz, “Exactly solvable models for many-body systems far from equilibrium”, Phase Transitions and Critical Phenomena, 19, eds. C. Domb, J. L. Lebowitz, 2001, 1–251 | DOI | MR

[4] M. R. Evans, R. A. Blythe, “Nonequilbrium dynamics in low dimensional systems”, Physica, 313 (2002), 110 | DOI | Zbl

[5] L.-H. Gwa, H. Spohn, “Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation”, Phys. Rev. A, 46 (1992), 844 | DOI

[6] B. Derrida, J. Lebowitz, “Exact Large Deviation Function in the Asymmetric Exclusion Process”, Phys. Rev. Lett., 80 (1998), 209 | DOI | MR | Zbl

[7] M. R. Evans, “Phase Transitions in One-Dimensional Nonequilibrium Systems”, Brazilian J. Physics, 30 (2000), 42 | DOI

[8] V. B. Priezzhev, “Exact Nonstationary Probabilities in the Asymmetric Exclusion Process on a Ring”, Phys. Rev. Lett., 91 (2003), 050601 | DOI

[9] A. M. Povolotsky, “Bethe ansatz solution of zero-range process with nonuniform stationary state”, Phys. Rev. E, 69 (2004), 061109 | DOI | MR

[10] M. Prahofer, H. Spohn, “Exact Scaling Functions for One-Dimensional Stationary KPZ Growth”, J. Stat. Phys., 115 (2004), 255 | DOI | MR | Zbl

[11] O. Golinelli, K. Mallick, “Bethe ansatz calculation of the spectral gap of the asymmetric exclusion process”, J. Phys. A: Math. Gen., 37 (2004), 3321 | DOI | MR | Zbl

[12] M. R. Evans, T. Hanney, “Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models”, J. Phys. A: Math. Gen., 38 (2005), R195 | DOI | MR | Zbl

[13] T. Sasamoto, “Spatial correlations of the 1D KPZ surface on a flat substrate”, J. Phys. A: Math. Gen., 38 (2005), L549 | DOI | MR

[14] O. Golinelli, K. Mallick, “Spectral gap of the totally asymmetric exclusion process at arbitrary filling”, J. Phys. A: Math. Gen., 38 (2005), 1419 | DOI | MR | Zbl

[15] J. de Gier, F. Essler, “Bethe Ansatz Solution of the Asymmetric Exclusion Process with Open Boundaries”, Phys. Rev. Lett., 95 (2005), 240601 | DOI | MR

[16] V. B. Priezzhev, “Nonstationary probabilities for the asymmetric exclusion process on a ring”, Pramana J. Phys., 64 (2005), 915 | DOI

[17] M. Kanai, K. Nishinari, T. Tokihiro, “Analytical study on the criticality of the stochastic optimal velocity model”, J. Phys. A: Math. Gen., 39 (2006), 9071 | DOI | MR | Zbl

[18] A. M. Povolotsky, J. F. F. Mendes, “Bethe Ansatz Solution of Discrete Time Stochastic Processes with Fully Parallel Update”, J. Stat. Phys., 123 (2006), 125 | DOI | MR | Zbl

[19] A. M. Povolotsky, V. B. Priezzhev, “Determinant solution for the Totally Asymmetric Exclusion Process with parallel update”, J. Stat. Mech., 2006 (2006), P07002 | DOI

[20] M. Kanai, “Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process”, J. Phys. A: Math. Gen., 40 (2007), 7127 | DOI | MR | Zbl

[21] A. Borodin, P. Ferrari, M. Prahofer, T. Sasamoto, “Fluctuation Properties of the TASEP with Periodic Initial Configuration”, J. Stat. Phys., 129 (2007), 1055 | DOI | MR | Zbl

[22] A. M. Povolotsky, V. B. Priezzhev, “Determinant solution for the Totally Asymmetric Exclusion Process with parallel update. II. Ring geometry”, J. Stat. Mech., 2007 (2007), P08018 | DOI | MR

[23] S. Prolhac, K. Mallick, “Current fluctuations in the exclusion process and Bethe ansatz”, J. Phys. A: Math. Gen., 41 (2008), 175002 | DOI | MR | Zbl

[24] N. Bogoliubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052 | MR | Zbl

[25] Y. Yamada, M. Katori, “Velocity correlations of a discrete-time totally asymmetric simple-exclusion process in stationary state on a circle”, Phys. Rev. E, 84 (2011), 041141 | DOI

[26] K. Mallick, Some Exact Results for the Exclusion Process, arXiv: 1101.2849 | MR

[27] L. D. Faddeev, “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Math. C, 1 (1980), 107–160; 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Sci., Singapore, 1995, 187–235 | DOI | MR

[28] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Phys., 151, 1982, 61–119 | DOI | MR | Zbl

[29] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[30] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, Moskva, 1992 | MR | Zbl

[31] J. D. Noh, D. Kim, “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1995), 1943 | DOI

[32] D. Kim, “Bethe Ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar–Parisi–Zhang–type growth model”, Phys. Rev. E, 52 (1995), 3512 | DOI

[33] D. S. Lee, D. Kim, “Large deviation function of the partially asymmetric exclusion process”, Phys. Rev. E, 59 (1999), 6476 | DOI

[34] N. M. Bogoliubov, T. Nassar, “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345 | DOI | MR | Zbl

[35] O. Golinelli, K. Mallick, “The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics”, J. Phys. A: Math. Gen., 39 (2006), 12679 | DOI | MR | Zbl

[36] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson system”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl

[37] F. R. Gantmakher, Teoriya matrits, Nauka, Moskva, 1966 | MR

[38] G. Schütz, “Duality relations for asymmetric exclusion processes”, J. Stat. Phys., 86 (1997), 1265 | DOI | MR | Zbl

[39] K. Motegi, K. Sakai, J. Sato, Exact relaxation dynamics of the totally asymmetric simple exclusion process, arXiv: 1201.2749