@article{ZNSL_2012_398_a0,
author = {N. M. Bogoliubov},
title = {Scalar products of the state vectors in the totally asymmetric exactly solvable models on a~ring},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--25},
year = {2012},
volume = {398},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/}
}
N. M. Bogoliubov. Scalar products of the state vectors in the totally asymmetric exactly solvable models on a ring. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 22, Tome 398 (2012), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_2012_398_a0/
[1] T. Liggett, Markovskie protsessy s lokalnym vzaimodeistviem, Mir, Moskva, 1989 | MR | Zbl
[2] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer, Berlin, 1991 | Zbl
[3] G. Schütz, “Exactly solvable models for many-body systems far from equilibrium”, Phase Transitions and Critical Phenomena, 19, eds. C. Domb, J. L. Lebowitz, 2001, 1–251 | DOI | MR
[4] M. R. Evans, R. A. Blythe, “Nonequilbrium dynamics in low dimensional systems”, Physica, 313 (2002), 110 | DOI | Zbl
[5] L.-H. Gwa, H. Spohn, “Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation”, Phys. Rev. A, 46 (1992), 844 | DOI
[6] B. Derrida, J. Lebowitz, “Exact Large Deviation Function in the Asymmetric Exclusion Process”, Phys. Rev. Lett., 80 (1998), 209 | DOI | MR | Zbl
[7] M. R. Evans, “Phase Transitions in One-Dimensional Nonequilibrium Systems”, Brazilian J. Physics, 30 (2000), 42 | DOI
[8] V. B. Priezzhev, “Exact Nonstationary Probabilities in the Asymmetric Exclusion Process on a Ring”, Phys. Rev. Lett., 91 (2003), 050601 | DOI
[9] A. M. Povolotsky, “Bethe ansatz solution of zero-range process with nonuniform stationary state”, Phys. Rev. E, 69 (2004), 061109 | DOI | MR
[10] M. Prahofer, H. Spohn, “Exact Scaling Functions for One-Dimensional Stationary KPZ Growth”, J. Stat. Phys., 115 (2004), 255 | DOI | MR | Zbl
[11] O. Golinelli, K. Mallick, “Bethe ansatz calculation of the spectral gap of the asymmetric exclusion process”, J. Phys. A: Math. Gen., 37 (2004), 3321 | DOI | MR | Zbl
[12] M. R. Evans, T. Hanney, “Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models”, J. Phys. A: Math. Gen., 38 (2005), R195 | DOI | MR | Zbl
[13] T. Sasamoto, “Spatial correlations of the 1D KPZ surface on a flat substrate”, J. Phys. A: Math. Gen., 38 (2005), L549 | DOI | MR
[14] O. Golinelli, K. Mallick, “Spectral gap of the totally asymmetric exclusion process at arbitrary filling”, J. Phys. A: Math. Gen., 38 (2005), 1419 | DOI | MR | Zbl
[15] J. de Gier, F. Essler, “Bethe Ansatz Solution of the Asymmetric Exclusion Process with Open Boundaries”, Phys. Rev. Lett., 95 (2005), 240601 | DOI | MR
[16] V. B. Priezzhev, “Nonstationary probabilities for the asymmetric exclusion process on a ring”, Pramana J. Phys., 64 (2005), 915 | DOI
[17] M. Kanai, K. Nishinari, T. Tokihiro, “Analytical study on the criticality of the stochastic optimal velocity model”, J. Phys. A: Math. Gen., 39 (2006), 9071 | DOI | MR | Zbl
[18] A. M. Povolotsky, J. F. F. Mendes, “Bethe Ansatz Solution of Discrete Time Stochastic Processes with Fully Parallel Update”, J. Stat. Phys., 123 (2006), 125 | DOI | MR | Zbl
[19] A. M. Povolotsky, V. B. Priezzhev, “Determinant solution for the Totally Asymmetric Exclusion Process with parallel update”, J. Stat. Mech., 2006 (2006), P07002 | DOI
[20] M. Kanai, “Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process”, J. Phys. A: Math. Gen., 40 (2007), 7127 | DOI | MR | Zbl
[21] A. Borodin, P. Ferrari, M. Prahofer, T. Sasamoto, “Fluctuation Properties of the TASEP with Periodic Initial Configuration”, J. Stat. Phys., 129 (2007), 1055 | DOI | MR | Zbl
[22] A. M. Povolotsky, V. B. Priezzhev, “Determinant solution for the Totally Asymmetric Exclusion Process with parallel update. II. Ring geometry”, J. Stat. Mech., 2007 (2007), P08018 | DOI | MR
[23] S. Prolhac, K. Mallick, “Current fluctuations in the exclusion process and Bethe ansatz”, J. Phys. A: Math. Gen., 41 (2008), 175002 | DOI | MR | Zbl
[24] N. Bogoliubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052 | MR | Zbl
[25] Y. Yamada, M. Katori, “Velocity correlations of a discrete-time totally asymmetric simple-exclusion process in stationary state on a circle”, Phys. Rev. E, 84 (2011), 041141 | DOI
[26] K. Mallick, Some Exact Results for the Exclusion Process, arXiv: 1101.2849 | MR
[27] L. D. Faddeev, “Quantum completely integrable models of field theory”, Sov. Sci. Rev. Math. C, 1 (1980), 107–160; 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Sci., Singapore, 1995, 187–235 | DOI | MR
[28] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Phys., 151, 1982, 61–119 | DOI | MR | Zbl
[29] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[30] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, Moskva, 1992 | MR | Zbl
[31] J. D. Noh, D. Kim, “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1995), 1943 | DOI
[32] D. Kim, “Bethe Ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar–Parisi–Zhang–type growth model”, Phys. Rev. E, 52 (1995), 3512 | DOI
[33] D. S. Lee, D. Kim, “Large deviation function of the partially asymmetric exclusion process”, Phys. Rev. E, 59 (1999), 6476 | DOI
[34] N. M. Bogoliubov, T. Nassar, “On the spectrum of the non-Hermitian phase-difference model”, Phys. Lett. A, 234 (1997), 345 | DOI | MR | Zbl
[35] O. Golinelli, K. Mallick, “The asymmetric simple exclusion process: an integrable model for non-equilibrium statistical mechanics”, J. Phys. A: Math. Gen., 39 (2006), 12679 | DOI | MR | Zbl
[36] N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, “Correlation functions for a strongly correlated boson system”, Nucl. Phys. B, 516 (1998), 501 | DOI | MR | Zbl
[37] F. R. Gantmakher, Teoriya matrits, Nauka, Moskva, 1966 | MR
[38] G. Schütz, “Duality relations for asymmetric exclusion processes”, J. Stat. Phys., 86 (1997), 1265 | DOI | MR | Zbl
[39] K. Motegi, K. Sakai, J. Sato, Exact relaxation dynamics of the totally asymmetric simple exclusion process, arXiv: 1201.2749