On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 157-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $u\colon\mathbb R^2\to\mathbb R^2$ denote an entire solution of the homogeneous Euler–Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If $|u(x)|$ is of slower growth than $|x|$ as $|x|\to\infty$, then $u$ must be constant. Moreover we show that $u$ is affine if either $\sup_{\mathbb R^2}|\nabla u|<\infty$ or $\limsup_{|x|\to\infty}|x|^{-1}|u(x)|<\infty$.
@article{ZNSL_2011_397_a8,
     author = {M. Fuchs and G. Zhang},
     title = {On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--171},
     year = {2011},
     volume = {397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - G. Zhang
TI  - On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 157
EP  - 171
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/
LA  - en
ID  - ZNSL_2011_397_a8
ER  - 
%0 Journal Article
%A M. Fuchs
%A G. Zhang
%T On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 157-171
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/
%G en
%F ZNSL_2011_397_a8
M. Fuchs; G. Zhang. On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/

[1] R. A. Adams, Sobolev spaces, Academic Press, New York–San-Francisco–London, 1975 | MR | Zbl

[2] M. Bildhauer, M. Fuchs, “Differentiability and higher integrability results for local minimizers of splitting type variational integrals in 2D with applications to nonlinear Hencky materials”, Calc. Var., 37 (2010), 167–186 | DOI | MR | Zbl

[3] S. Dain, “Generalized Korn's inequality and conformal Killing vectors”, Calc. Var., 25:4 (2006), 535–540 | DOI | MR | Zbl

[4] G. Duvaut, J. L. Lions, Les Inequations en Mecanique et en Physique, Dunod, Paris, 1972 | MR | Zbl

[5] J. Frehse, G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening”, Transl. Amer. Math. Soc. II, 193 (1999), 127–152 | MR

[6] M. Fuchs, M. Bildhauer, “Compact embeddings of the space of functions with bounded logarithmic deformation”, J. Math. Sci., 172:1 (2011), 165–183 | DOI | MR | Zbl

[7] M. Fuchs, G. Seregin, “Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening”, Math. Meth. Appl. Sci., 22 (1999), 317–351 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., 1749, Springer-Verlag, Berlin–Heidelberg–New York, 2000 | DOI | MR | Zbl

[9] M. Fuchs, G. Zhang, “Liouville theorems for entire local minimizers of energies defined on the class $L\log L$ and for entire solutions of the stationary Prandtl–Eyring fluid model”, Calc. Var. | DOI

[10] M. Giaquinta, G. Modica, “Nonlinear systems of the type of the stationary Navier–Stokes system”, J. Reine Angew. Math., 330 (1982), 173–214 | MR | Zbl

[11] H. Hencky, “Zur Theorie plastischer Deformationen”, Z. Angew. Math. Mech., 4 (1924), 323–334 | DOI

[12] V. D. Klyusnikov, The mathematical theory of plasticity, Izd. Moscov. Gos. Univ., Moscow, 1979 | MR

[13] Y. G. Reshetnyak, “Estimates for certain differential operators with finite dimensional kernel”, Sibirsk. Mat. Zh., 11 (1970), 414–428 | MR | Zbl