On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 157-171

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u\colon\mathbb R^2\to\mathbb R^2$ denote an entire solution of the homogeneous Euler–Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If $|u(x)|$ is of slower growth than $|x|$ as $|x|\to\infty$, then $u$ must be constant. Moreover we show that $u$ is affine if either $\sup_{\mathbb R^2}|\nabla u|\infty$ or $\limsup_{|x|\to\infty}|x|^{-1}|u(x)|\infty$.
@article{ZNSL_2011_397_a8,
     author = {M. Fuchs and G. Zhang},
     title = {On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - G. Zhang
TI  - On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 157
EP  - 171
VL  - 397
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/
LA  - en
ID  - ZNSL_2011_397_a8
ER  - 
%0 Journal Article
%A M. Fuchs
%A G. Zhang
%T On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 157-171
%V 397
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/
%G en
%F ZNSL_2011_397_a8
M. Fuchs; G. Zhang. On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/