On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 157-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $u\colon\mathbb R^2\to\mathbb R^2$ denote an entire solution of the homogeneous Euler–Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If $|u(x)|$ is of slower growth than $|x|$ as $|x|\to\infty$, then $u$ must be constant. Moreover we show that $u$ is affine if either $\sup_{\mathbb R^2}|\nabla u|\infty$ or $\limsup_{|x|\to\infty}|x|^{-1}|u(x)|\infty$.
			
            
            
            
          
        
      @article{ZNSL_2011_397_a8,
     author = {M. Fuchs and G. Zhang},
     title = {On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/}
}
                      
                      
                    TY - JOUR AU - M. Fuchs AU - G. Zhang TI - On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 157 EP - 171 VL - 397 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/ LA - en ID - ZNSL_2011_397_a8 ER -
%0 Journal Article %A M. Fuchs %A G. Zhang %T On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 157-171 %V 397 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/ %G en %F ZNSL_2011_397_a8
M. Fuchs; G. Zhang. On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a8/