Note on bounded scale-invariant quantities for the Navier--Stokes equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 150-156
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this note, we show that if the velocity field $v\in L_\infty(BMO^{-1})$, then all scaled energy quantities are bounded. An interesting consequence is that each axially symmetric solution to the Navier–Stokes belonging to $L_\infty(BMO^{-1})$ is smooth.
			
            
            
            
          
        
      @article{ZNSL_2011_397_a7,
     author = {G. Seregin},
     title = {Note on bounded scale-invariant quantities for the {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--156},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/}
}
                      
                      
                    G. Seregin. Note on bounded scale-invariant quantities for the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 150-156. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/