Note on bounded scale-invariant quantities for the Navier--Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 150-156

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we show that if the velocity field $v\in L_\infty(BMO^{-1})$, then all scaled energy quantities are bounded. An interesting consequence is that each axially symmetric solution to the Navier–Stokes belonging to $L_\infty(BMO^{-1})$ is smooth.
@article{ZNSL_2011_397_a7,
     author = {G. Seregin},
     title = {Note on bounded scale-invariant quantities for the {Navier--Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--156},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/}
}
TY  - JOUR
AU  - G. Seregin
TI  - Note on bounded scale-invariant quantities for the Navier--Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 150
EP  - 156
VL  - 397
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/
LA  - en
ID  - ZNSL_2011_397_a7
ER  - 
%0 Journal Article
%A G. Seregin
%T Note on bounded scale-invariant quantities for the Navier--Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 150-156
%V 397
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/
%G en
%F ZNSL_2011_397_a7
G. Seregin. Note on bounded scale-invariant quantities for the Navier--Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 150-156. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/