Note on bounded scale-invariant quantities for the Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 150-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note, we show that if the velocity field $v\in L_\infty(BMO^{-1})$, then all scaled energy quantities are bounded. An interesting consequence is that each axially symmetric solution to the Navier–Stokes belonging to $L_\infty(BMO^{-1})$ is smooth.
@article{ZNSL_2011_397_a7,
     author = {G. Seregin},
     title = {Note on bounded scale-invariant quantities for the {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--156},
     year = {2011},
     volume = {397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/}
}
TY  - JOUR
AU  - G. Seregin
TI  - Note on bounded scale-invariant quantities for the Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 150
EP  - 156
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/
LA  - en
ID  - ZNSL_2011_397_a7
ER  - 
%0 Journal Article
%A G. Seregin
%T Note on bounded scale-invariant quantities for the Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 150-156
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/
%G en
%F ZNSL_2011_397_a7
G. Seregin. Note on bounded scale-invariant quantities for the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 150-156. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a7/

[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[3] Z. Lei, Qi S. Zhang, A Liouville Theorem for the Axially-symmetric Navier–Stokes equations, arXiv: 1011.5066 | MR

[4] G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, “Liouville theorems for the Navier–Stokes equations and applications”, Acta Mathematica, 203 (2009), 83–105 | DOI | MR | Zbl

[5] G. Seregin, “Weak solutions to the Navier–Stokes equations with bounded scale-invariant quantities”, Proceedings of the International Congress of Mathematics, v. III, Hyderabad, India, 2010, 2105–2127 | MR

[6] G. Seregin, V. Šverák, “On Type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations”, Communications in PDE's, 34 (2009), 171–201 | DOI | MR | Zbl

[7] G. Seregin, W. Zajaczkowski, “A sufficient condition of regularity for axially symmetric solutions to the Navier–Stokes equations”, SIMA J. Math. Anal., 39 (2007), 669–685 | DOI | MR | Zbl