On a canonical extension of Korn's first and Poincaré's inequality to $\mathsf H(\operatorname{Curl})$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 115-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove a Korn-type inequality in $\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$ for tensor fields $P$ mapping $\Omega$ to $\mathbb R^{3\times3}$. More precisely, let $\Omega\subset\mathbb R^3$ be a bounded domain with connected Lipschitz boundary $\partial\Omega$. Then, there exists a constant $c>0$ such that \begin{equation} c\|P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\leq\|\operatorname{sym}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} +\|\operatorname{Curl}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} \tag{0.1} \end{equation} holds for all tensor fields $P\in\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$, i.e., all $$ P\in\mathsf H(\operatorname{Curl};\Omega,\mathbb R^{3\times3}) $$ with vanishing tangential trace on $\partial\Omega$. Here, rotation and tangential trace are defined row-wise. For compatible $P$ (i.e., $P=\nabla v$), $\operatorname{Curl}P=0$, where $v\in\mathsf H^1(\Omega,\mathbb R^3)$ a vector field having components $v_n$, for which $\nabla v_n$ are normal at $\partial\Omega$, the estimate $(0.1)$ is reduced to a non-standard variant of the Korn's first inequality: $$ c\|\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\le \|\operatorname{sym}\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}. $$ For skew-symmetric $P$ ($\operatorname{sym}P=0$) the estimate $(0.1)$ generates a non-standard version of the Poincaré. Therefore, the estimateis a generalization of two classical inequalities of Poincaré and Korn.
@article{ZNSL_2011_397_a5,
     author = {P. Neff and D. Pauly and K.-J. Witsch},
     title = {On a~canonical extension of {Korn's} first and {Poincar\'e's} inequality to~$\mathsf H(\operatorname{Curl})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--125},
     year = {2011},
     volume = {397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/}
}
TY  - JOUR
AU  - P. Neff
AU  - D. Pauly
AU  - K.-J. Witsch
TI  - On a canonical extension of Korn's first and Poincaré's inequality to $\mathsf H(\operatorname{Curl})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 115
EP  - 125
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/
LA  - en
ID  - ZNSL_2011_397_a5
ER  - 
%0 Journal Article
%A P. Neff
%A D. Pauly
%A K.-J. Witsch
%T On a canonical extension of Korn's first and Poincaré's inequality to $\mathsf H(\operatorname{Curl})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 115-125
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/
%G en
%F ZNSL_2011_397_a5
P. Neff; D. Pauly; K.-J. Witsch. On a canonical extension of Korn's first and Poincaré's inequality to $\mathsf H(\operatorname{Curl})$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 115-125. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/

[1] P. G. Ciarlet, “On Korn's inequality”, Chin. Ann. Math., 31B:5 (2010), 607–618 | DOI | MR | Zbl

[2] J. K. Djoko, F. Ebobisse, A. T. McBride, B. D. Reddy, “A discontinuous Galerkin formulation for classical and gradient plasticity. Part 1: Formulation and analysis”, Comp. Meth. Appl. Mech. Engrg., 196:37 (2007), 3881–3897 | DOI | MR | Zbl

[3] F. Ebobisse, P. Neff, “Rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin”, Math. Mech. Solids, 15 (2010), 691–703 | DOI | MR | Zbl

[4] A. Garroni, G. Leoni, M. Ponsiglione, “Gradient theory for plasticity via homogenization of discrete dislocations”, J. Europ. Math. Soc., 12:5 (2010), 1231–1266 | DOI | MR | Zbl

[5] V. Girault, P. A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Lect. Notes Math., 749, Springer, Heidelberg, 1979 | DOI | MR | Zbl

[6] R. Leis, Initial Boundary Value problems in Mathematical Physics, Teubner, Stuttgart, 1986 | MR | Zbl

[7] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003 | MR | Zbl

[8] P. Neff, “On Korn's first inequality with nonconstant coefficients”, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 221–243 | DOI | MR | Zbl

[9] P. Neff, K. Chełmiński, H. D. Alber, Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case, Preprint 2502 ; Math. Mod. Meth. Appl. Sci. (M3AS), 19:2 (2009), 1–40 http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html | MR

[10] P. Neff, D. Pauly, K.-J. Witsch, “A Canonical extension of Korn's first inequality to H(Curl) motivated by gradient plasticity with plastic spin”, C. R. Acad. Sci. Paris Ser. I, 349 (2011), 1251–1254 | DOI | MR | Zbl

[11] P. Neff, D. Pauly, K.-J. Witsch, “A Korn's inequality for incompatible tensor fields”, Proc. Appl. Math. Mech. (PAMM), 11 (2011), 683–684 | DOI

[12] P. Neff, D. Pauly, K.-J. Witsch, “Maxwell meets Korn: A new coercive inequality for tensor fields in $\mathbb R^{N\times N}$ with square-integrable exterior derivative”, Math. Methods Appl. Sci. (to appear) , arXiv: ; Preprint SM-E-737, Universität Duisburg–Essen, Schriftenreihe der Fakultät für Mathematik, 2011 1105.5013http://www.uni-due.de/mathematik/preprints.shtml | MR

[13] P. Neff, A. Sydow, C. Wieners, Numerical approximation of incremental infinitesimal gradient plasticity, Preprint IWRM 08/01 ; Int. J. Num. Meth. Engrg., 77:3 (2009), 414–436 http://www.math.kit.edu/iwrmm/seite/preprints/ | DOI | MR | Zbl

[14] D. Pauly, “Hodge–Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with inhomogeneous and anisotropic media”, Math. Methods Appl. Sci., 31 (2008), 1509–1543 | DOI | MR | Zbl

[15] R. Picard, “On the boundary value problems of electro- and magnetostatics”, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165–174 | DOI | MR | Zbl

[16] R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl

[17] R. Picard, “Some decomposition theorems and their applications to non-linear potential theory and Hodge theory”, Math. Methods Appl. Sci., 12 (1990), 35–53 | DOI | MR

[18] R. Picard, N. Weck, K.-J. Witsch, “Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles”, Analysis (Munich), 21 (2001), 231–263 | MR | Zbl

[19] B. D. Reddy, F. Ebobisse, A. T. McBride, “Well-posedness of a model of strain gradient plasticity for plastically irrotational materials”, Int. J. Plasticity, 24 (2008), 55–73 | DOI | Zbl

[20] T. Valent, Boundary Value Problems of Finite Elasticity, Springer, Berlin, 1988 | MR | Zbl

[21] C. Weber, “A local compactness theorem for Maxwell's equations”, J. Math. Anal. Appl., 2 (1980), 12–25 | MR | Zbl

[22] C. Weber, “Regularity theorems for Maxwell's equations”, Math. Methods Appl. Sci., 3 (1981), 523–536 | DOI | MR | Zbl

[23] N. Weck, “Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries”, J. Math. Anal. Appl., 46 (1974), 410–437 | DOI | MR | Zbl

[24] K.-J. Witsch, “A remark on a compactness result in electromagnetic theory”, Math. Methods Appl. Sci., 16 (1993), 123–129 | DOI | MR | Zbl