On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 115-125
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a Korn-type inequality in $\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$ for tensor fields $P$ mapping $\Omega$ to $\mathbb R^{3\times3}$. More precisely, let $\Omega\subset\mathbb R^3$ be a bounded domain with connected Lipschitz boundary $\partial\Omega$. Then, there exists a constant $c>0$ such that
\begin{equation}
c\|P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\leq\|\operatorname{sym}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} +\|\operatorname{Curl}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}
\tag{0.1}
\end{equation}
holds for all tensor fields $P\in\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$, i.e., all
$$
P\in\mathsf H(\operatorname{Curl};\Omega,\mathbb R^{3\times3})
$$
with vanishing tangential trace on $\partial\Omega$. Here, rotation and tangential trace are defined row-wise. For compatible $P$ (i.e., $P=\nabla v$), $\operatorname{Curl}P=0$, where $v\in\mathsf H^1(\Omega,\mathbb R^3)$ a vector field having components $v_n$, for which $\nabla v_n$ are normal at $\partial\Omega$, the estimate $(0.1)$ is reduced to a non-standard variant of the Korn's first inequality:
$$
c\|\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\le \|\operatorname{sym}\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}.
$$
For skew-symmetric $P$ ($\operatorname{sym}P=0$) the estimate $(0.1)$ generates a non-standard version of the Poincaré. Therefore, the estimateis a generalization of two classical inequalities of Poincaré and Korn.
@article{ZNSL_2011_397_a5,
author = {P. Neff and D. Pauly and K.-J. Witsch},
title = {On a~canonical extension of {Korn's} first and {Poincar\'e's} inequality to~$\mathsf H(\operatorname{Curl})$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {115--125},
publisher = {mathdoc},
volume = {397},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/}
}
TY - JOUR
AU - P. Neff
AU - D. Pauly
AU - K.-J. Witsch
TI - On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2011
SP - 115
EP - 125
VL - 397
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/
LA - en
ID - ZNSL_2011_397_a5
ER -
%0 Journal Article
%A P. Neff
%A D. Pauly
%A K.-J. Witsch
%T On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 115-125
%V 397
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/
%G en
%F ZNSL_2011_397_a5
P. Neff; D. Pauly; K.-J. Witsch. On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 115-125. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/