On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 115-125

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a Korn-type inequality in $\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$ for tensor fields $P$ mapping $\Omega$ to $\mathbb R^{3\times3}$. More precisely, let $\Omega\subset\mathbb R^3$ be a bounded domain with connected Lipschitz boundary $\partial\Omega$. Then, there exists a constant $c>0$ such that \begin{equation} c\|P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\leq\|\operatorname{sym}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} +\|\operatorname{Curl}P\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})} \tag{0.1} \end{equation} holds for all tensor fields $P\in\overset\circ{\mathsf H}(\operatorname{Curl};\Omega,\mathbb R^{3\times3})$, i.e., all $$ P\in\mathsf H(\operatorname{Curl};\Omega,\mathbb R^{3\times3}) $$ with vanishing tangential trace on $\partial\Omega$. Here, rotation and tangential trace are defined row-wise. For compatible $P$ (i.e., $P=\nabla v$), $\operatorname{Curl}P=0$, where $v\in\mathsf H^1(\Omega,\mathbb R^3)$ a vector field having components $v_n$, for which $\nabla v_n$ are normal at $\partial\Omega$, the estimate $(0.1)$ is reduced to a non-standard variant of the Korn's first inequality: $$ c\|\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}\le \|\operatorname{sym}\nabla v\|_{\mathsf L^2(\Omega,\mathbb R^{3\times3})}. $$ For skew-symmetric $P$ ($\operatorname{sym}P=0$) the estimate $(0.1)$ generates a non-standard version of the Poincaré. Therefore, the estimateis a generalization of two classical inequalities of Poincaré and Korn.
@article{ZNSL_2011_397_a5,
     author = {P. Neff and D. Pauly and K.-J. Witsch},
     title = {On a~canonical extension of {Korn's} first and {Poincar\'e's} inequality to~$\mathsf H(\operatorname{Curl})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/}
}
TY  - JOUR
AU  - P. Neff
AU  - D. Pauly
AU  - K.-J. Witsch
TI  - On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 115
EP  - 125
VL  - 397
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/
LA  - en
ID  - ZNSL_2011_397_a5
ER  - 
%0 Journal Article
%A P. Neff
%A D. Pauly
%A K.-J. Witsch
%T On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 115-125
%V 397
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/
%G en
%F ZNSL_2011_397_a5
P. Neff; D. Pauly; K.-J. Witsch. On a~canonical extension of Korn's first and Poincar\'e's inequality to~$\mathsf H(\operatorname{Curl})$. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 115-125. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a5/