Double-sided estimates for eigenfrequencies in the John problem for freely floating body
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 89-114
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The two-dimensional problem on oblique incident waves and a freely floating cylinder is reduced to the study of the spectrum of a suitable self-adjoint operator in Hilbert space. Using tools from spectral measure theory we estimate the difference between eigenfrequencies of the original problem and a problem on an inert body, which does not react to the buoyancy forces. We give the localization of eigenfrequencies of the freely floating body, and in addition derive a sufficient condition for the existence of the point spectrum in the corresponding boundary value problem.
			
            
            
            
          
        
      @article{ZNSL_2011_397_a4,
     author = {S. A. Nazarov and J. Taskinen},
     title = {Double-sided estimates for eigenfrequencies in the {John} problem for freely floating body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--114},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/}
}
                      
                      
                    TY - JOUR AU - S. A. Nazarov AU - J. Taskinen TI - Double-sided estimates for eigenfrequencies in the John problem for freely floating body JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 89 EP - 114 VL - 397 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/ LA - ru ID - ZNSL_2011_397_a4 ER -
S. A. Nazarov; J. Taskinen. Double-sided estimates for eigenfrequencies in the John problem for freely floating body. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 89-114. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/