Double-sided estimates for eigenfrequencies in the John problem for freely floating body
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 89-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The two-dimensional problem on oblique incident waves and a freely floating cylinder is reduced to the study of the spectrum of a suitable self-adjoint operator in Hilbert space. Using tools from spectral measure theory we estimate the difference between eigenfrequencies of the original problem and a problem on an inert body, which does not react to the buoyancy forces. We give the localization of eigenfrequencies of the freely floating body, and in addition derive a sufficient condition for the existence of the point spectrum in the corresponding boundary value problem.
@article{ZNSL_2011_397_a4,
     author = {S. A. Nazarov and J. Taskinen},
     title = {Double-sided estimates for eigenfrequencies in the {John} problem for freely floating body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--114},
     year = {2011},
     volume = {397},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - J. Taskinen
TI  - Double-sided estimates for eigenfrequencies in the John problem for freely floating body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 89
EP  - 114
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/
LA  - ru
ID  - ZNSL_2011_397_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A J. Taskinen
%T Double-sided estimates for eigenfrequencies in the John problem for freely floating body
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 89-114
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/
%G ru
%F ZNSL_2011_397_a4
S. A. Nazarov; J. Taskinen. Double-sided estimates for eigenfrequencies in the John problem for freely floating body. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 89-114. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/

[1] F. John, “On the motion of floating bodies. I”, Comm. Pure Appl. Math., 2:1 (1949), 13–57 ; “II”, Comm. Pure Appl. Math., 3:1 (1950), 45–101 | DOI | MR | Zbl | DOI | MR

[2] A.-S. Bonnet-Ben Dhia, P. Joly, “Mathematical analysis of guided water-waves”, SIAM J. Appl. Math., 53 (1993), 1507–1550 | DOI | MR | Zbl

[3] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29 | DOI | MR | Zbl

[4] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[5] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007

[6] P. McIver, M. McIver, “Trapped modes in the water-wave problem for a freely-floating structure”, J. Fluid Mech., 558 (2006), 53–67 | DOI | MR | Zbl

[7] D. V. Evans, R. Porter, “Wave-free motions of isolated bodies and the existence of motion-trapped modes”, J. Fluid Mech., 584 (2007), 225–234 | DOI | MR | Zbl

[8] P. McIver, M. McIver, “Motion trapping structures in the three-dimensional water-wave problem”, J. Engng Math., 58 (2007), 67–75 | DOI | MR | Zbl

[9] R. Porter, D. V. Evans, “Examples of trapped modes in the presence of freely floating structures”, J. Fluid Mech., 606 (2008), 189–207 | DOI | MR | Zbl

[10] R. Porter, D. V. Evans, “Water-wave trapping by floating circular cylinders”, J. Fluid Mech., 633 (2009), 311–325 | DOI | MR | Zbl

[11] N. Kuznetsov, “On the problem of time-harmonic water waves in the presence of a freely floating structure”, Algebra i analiz, 22:6 (2010), 185–199 | MR

[12] M. McIver, “An example of non-uniqueness in the two-dimensional linear water wave problem”, J. Fluid Mech., 315 (1996), 257–266 | DOI | MR | Zbl

[13] S. A. Nazarov, J. H. Videman, “Trapping of water waves by freely floating structures in a channel”, Proc. R. Soc. A. (to appear)

[14] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sbornik, 199:12 (2008), 53–78 | DOI | MR | Zbl

[15] S. A. Nazarov, “Kontsentratsiya chastot lovushechnykh mod v zadachakh o svobodno plavayuschikh telakh”, Mat. sbornik (to appear)

[16] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR

[17] S. A. Nazarov, “Nepolnyi printsip sravneniya v zadachakh o poverkhnostnykh volnakh, zakhvachennykh fiksirovannymi i svobodno plavayuschimi telami”, Problemy matem. analiza, 56, Novosibirsk, 2011, 83–114 | Zbl

[18] F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl

[19] O. V. Motygin, “On trapping of surface water waves by cylindrical bodies in a channel”, Wave Motion, 45 (2008), 940–951 | DOI | MR | Zbl

[20] S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Doklady RAN, 429:6 (2009), 746–749 | MR | Zbl

[21] S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauchn. semin. POMI, 369, 2009, 202–223 | MR

[22] C. C. Mei, M. Stiassnie, D. K.-P. Yue, Theory and Applications of Ocean Surface Waves. Part 1. Linear aspects, World Scientiic, 2005 | MR

[23] L. Euler, Theorie complette (sic) de la construction et de la manoeuvre des vaisseaux, Imperial Academy of Sciences, St. Petersburg, 1773

[24] T. H. Havelock, “Forced surface waves”, Phil. Mag., 8 (1929), 569–576 | Zbl