Double-sided estimates for eigenfrequencies in the John problem for freely floating body
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 89-114

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional problem on oblique incident waves and a freely floating cylinder is reduced to the study of the spectrum of a suitable self-adjoint operator in Hilbert space. Using tools from spectral measure theory we estimate the difference between eigenfrequencies of the original problem and a problem on an inert body, which does not react to the buoyancy forces. We give the localization of eigenfrequencies of the freely floating body, and in addition derive a sufficient condition for the existence of the point spectrum in the corresponding boundary value problem.
@article{ZNSL_2011_397_a4,
     author = {S. A. Nazarov and J. Taskinen},
     title = {Double-sided estimates for eigenfrequencies in the {John} problem for freely floating body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--114},
     publisher = {mathdoc},
     volume = {397},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - J. Taskinen
TI  - Double-sided estimates for eigenfrequencies in the John problem for freely floating body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 89
EP  - 114
VL  - 397
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/
LA  - ru
ID  - ZNSL_2011_397_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A J. Taskinen
%T Double-sided estimates for eigenfrequencies in the John problem for freely floating body
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 89-114
%V 397
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/
%G ru
%F ZNSL_2011_397_a4
S. A. Nazarov; J. Taskinen. Double-sided estimates for eigenfrequencies in the John problem for freely floating body. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 89-114. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a4/