Maximal functions measuring smooytness: counterexamples
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 53-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider two main maximal operators measuring smoothness. For all possible values of the parameters, we give simple examples of bounded functions with compact support that clearly show quite clearly the difference between these maximal operators.
@article{ZNSL_2011_397_a2,
     author = {E. E. Lokharu},
     title = {Maximal functions measuring smooytness: counterexamples},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--72},
     year = {2011},
     volume = {397},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a2/}
}
TY  - JOUR
AU  - E. E. Lokharu
TI  - Maximal functions measuring smooytness: counterexamples
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 53
EP  - 72
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a2/
LA  - ru
ID  - ZNSL_2011_397_a2
ER  - 
%0 Journal Article
%A E. E. Lokharu
%T Maximal functions measuring smooytness: counterexamples
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 53-72
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a2/
%G ru
%F ZNSL_2011_397_a2
E. E. Lokharu. Maximal functions measuring smooytness: counterexamples. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 53-72. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a2/

[1] R. DeVore, R. Sharpley, Maximal functions measuring smoothness, Memoirs Amer. Math. Soc., 47, no. 293, 1984 | DOI | MR

[2] A. Calderon, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[3] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl