Global solvability of a problem governing the motion of two incompressible capillary fluids in a container
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 20-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We deal with the motion of two incompressible fluids in a container, one of which is inside another. We take surface tension into account. We prove that this problem is uniquely solvable in an infinite time interval provided the initial velocity of the liquids is small and an initial configuration of the inner fluid is close to a ball. Moreover, we show that the velocity decays exponentially at infinity with respect to time and that the interface between the fluids tends to a sphere of the certain radius. The proof is based on the exponential estimate of a generalized energy and on a local existence theorem of the problem in anisotropic Hölder spaces. We follow the scheme developed by one of the authors for proving global solvability of a problem governing the motion of one incompressible capillary fluid bounded by a free surface.
@article{ZNSL_2011_397_a1,
     author = {I. V. Denisova and V. A. Solonnikov},
     title = {Global solvability of a~problem governing the motion of two incompressible capillary fluids in a~container},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--52},
     year = {2011},
     volume = {397},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a1/}
}
TY  - JOUR
AU  - I. V. Denisova
AU  - V. A. Solonnikov
TI  - Global solvability of a problem governing the motion of two incompressible capillary fluids in a container
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 20
EP  - 52
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a1/
LA  - ru
ID  - ZNSL_2011_397_a1
ER  - 
%0 Journal Article
%A I. V. Denisova
%A V. A. Solonnikov
%T Global solvability of a problem governing the motion of two incompressible capillary fluids in a container
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 20-52
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a1/
%G ru
%F ZNSL_2011_397_a1
I. V. Denisova; V. A. Solonnikov. Global solvability of a problem governing the motion of two incompressible capillary fluids in a container. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 20-52. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a1/

[1] I. V. Denisova, V. A. Solonnikov, “Klassicheskaya razreshimost zadachi o dvizhenii dvukh vyazkikh neszhimaemykh zhidkostei”, Algebra i analiz, 7:5 (1995), 101–142 | MR | Zbl

[2] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Lect. Notes Mat., 1812, 2003, 123–175 | DOI | MR | Zbl

[3] V. A. Solonnikov, “Otsenki resheniya nestatsionarnoi sistemy Nave–Stoksa”, Zap. nauchn. semin. LOMI, 38, 1973, 153–231 | MR | Zbl

[4] I. V. Denisova, “Razreshimost v gëlderovskikh prostranstvakh lineinoi zadachi o dvizhenii dvukh zhidkostei, razdelennykh zamknutoi poverkhnostyu”, Algebra i analiz, 5:4 (1993), 122–148 | MR | Zbl

[5] I. V. Denisova, V. A. Solonnikov, “Razreshimost linearizovannoi zadachi o dvizhenii kapli v potoke zhidkosti”, Zap. nauchn. semin. LOMI, 171, 1989, 53–65 | MR | Zbl

[6] I. V. Denisova, “Dvizhenie kapli v potoke zhidkosti”, Dinamika sploshnoi sredy, 93/94, SO AN SSSR, Novosibirsk, 1989, 32–37 | MR

[7] I. V. Denisova, “Problem of the motion of two viscous incompressible fluids separated by a closed free interface”, Acta Appl. Math., 37 (1994), 31–40 | DOI | MR | Zbl

[8] N. Tanaka, “Global existence of two phase nonhomogeneous viscous incompressible fluid flow”, Commun. Part. Diff. Eq., 18:1–2 (1993), 41–81 | DOI | MR | Zbl

[9] N. Tanaka, “Two-phase free boundary problem for viscous incompressible thermocapillary convection”, Japan J. Mech., 21 (1995), 1–41 | MR

[10] I. V. Denisova, “Global solvability of a problem on two fluid motion without surface tension”, Zap. nauchn. semin. POMI, 348, 2007, 19–39 | MR

[11] V. A. Solonnikov, “O neustanovivshemsya dvizhenii konechnoi massy zhidkosti, ogranichennoi svobodnoi poverkhnostyu”, Zap. nauchn. semin. LOMI, 152, 1986, 137–157 | MR | Zbl

[12] V. A. Solonnikov, “O neustanovivshemsya dvizhenii konechnoi izolirovannoi massy samogravitiruyuschei zhidkosti”, Algebra i analiz, 1:1 (1989), 207–249 | MR | Zbl

[13] M. Padula, “On the exponential stability of the rest state of a viscous compressible fluid”, J. Math. Fluid Mech., 1 (1999), 62–77 | DOI | MR | Zbl

[14] V. A. Solonnikov, “Otsenka obobschënnoi energii v zadache so svobodnoi granitsei dlya vyazkoi neszhimaemoi zhidkosti”, Zap. nauchn. semin. POMI, 282, 2001, 216–243 | MR | Zbl

[15] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[16] I. Sh. Mogilevskii, V. A. Solonnikov, “On the solvability of an evolution free boundary problem for the Navier–Stokes equations in Hölder spaces of functions”, Mathematlcal Problems Relating to Navier–Stokes Equations, Ser. Adv. Math. Appl. Sci., 11, ed. G. P. Galdi, World Sci. Publ., 1992, 105–181 | DOI | MR

[17] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[18] V. A. Solonnikov, “On the stability of uniformly rotating viscous incompressible self-gravitating liquid”, Zap. nauchn. semin. POMI, 348, 2007, 165–208 | MR