On the local smoothness of weak solutions to the MHD system near the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish conditions sufficient for local regularity of the siutable weak solutions to the MHD system near the plane part of the boundary.
@article{ZNSL_2011_397_a0,
     author = {V. Vyalov},
     title = {On the local smoothness of weak solutions to the {MHD} system near the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--19},
     year = {2011},
     volume = {397},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a0/}
}
TY  - JOUR
AU  - V. Vyalov
TI  - On the local smoothness of weak solutions to the MHD system near the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 5
EP  - 19
VL  - 397
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a0/
LA  - en
ID  - ZNSL_2011_397_a0
ER  - 
%0 Journal Article
%A V. Vyalov
%T On the local smoothness of weak solutions to the MHD system near the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 5-19
%V 397
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a0/
%G en
%F ZNSL_2011_397_a0
V. Vyalov. On the local smoothness of weak solutions to the MHD system near the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a0/

[1] Wiley Sons, 1978 | MR | Zbl | Zbl

[2] A. Mikhaylov, “On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Zap. Nauchn. Semin. POMI, 370, 2009, 73–93 | MR

[3] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[4] G. A. Seregin, “Local regularity for suitible weak solutions to the Navier–Stokes equations”, Uspekhi Mat. Nauk, 62:3 (2007), 149–168 | DOI | MR | Zbl

[5] G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[6] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary patial regularity for the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl

[7] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[8] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Mat. Nauk, 58:2(350) (2003), 123–156 | DOI | MR | Zbl

[9] V. Vyalov, T. Shilkin, “On the boundary regularity of weak solution to the MHD system”, Zap. Nauchn. Semin. POMI, 385, 2010, 18–53 | MR