@article{ZNSL_2011_397_a0,
author = {V. Vyalov},
title = {On the local smoothness of weak solutions to the {MHD} system near the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--19},
year = {2011},
volume = {397},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a0/}
}
V. Vyalov. On the local smoothness of weak solutions to the MHD system near the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 42, Tome 397 (2011), pp. 5-19. http://geodesic.mathdoc.fr/item/ZNSL_2011_397_a0/
[1] Wiley Sons, 1978 | MR | Zbl | Zbl
[2] A. Mikhaylov, “On local regularity for suitable weak solutions of the Navier–Stokes equations near the boundary”, Zap. Nauchn. Semin. POMI, 370, 2009, 73–93 | MR
[3] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[4] G. A. Seregin, “Local regularity for suitible weak solutions to the Navier–Stokes equations”, Uspekhi Mat. Nauk, 62:3 (2007), 149–168 | DOI | MR | Zbl
[5] G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl
[6] G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary patial regularity for the Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 310, 2004, 158–190 | MR | Zbl
[7] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl
[8] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Uspekhi Mat. Nauk, 58:2(350) (2003), 123–156 | DOI | MR | Zbl
[9] V. Vyalov, T. Shilkin, “On the boundary regularity of weak solution to the MHD system”, Zap. Nauchn. Semin. POMI, 385, 2010, 18–53 | MR