Bene\v s condition for discontinuous exponential martingale
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 144-154

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that the Girsanov exponent $\mathfrak z_t$, being solution of Doléans-Dade equation $\mathfrak z_t=1+\int_0^t\mathfrak z_s\alpha(s)\,dB_s$ generated by Brownian motion $B_t$ and a random process $\alpha(t)$ with $\int_0^t\alpha^2(s)\,ds\infty$ a.s., is the martingale provided that the Beneš condition $$ |\alpha(t)|^2\le\mathrm{const.}\big[1+\sup_{s\in[0,t]}B^2_s\big],\quad\forall\ t>0, $$ holds true. In this paper, we show that $\int_0^t\alpha(s)\,dB_s$ can be replaced by a purely discontinuous square integrable martingale $M_t$ paths from the Skorokhod space $ \mathbb D_{[0,\infty)}$ having jumps $\alpha(s)\triangle M_t>-1$. The method of proof differs from the original Beneš proof.
@article{ZNSL_2011_396_a8,
     author = {R. Liptser},
     title = {Bene\v s condition for discontinuous exponential martingale},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--154},
     publisher = {mathdoc},
     volume = {396},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a8/}
}
TY  - JOUR
AU  - R. Liptser
TI  - Bene\v s condition for discontinuous exponential martingale
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 144
EP  - 154
VL  - 396
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a8/
LA  - en
ID  - ZNSL_2011_396_a8
ER  - 
%0 Journal Article
%A R. Liptser
%T Bene\v s condition for discontinuous exponential martingale
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 144-154
%V 396
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a8/
%G en
%F ZNSL_2011_396_a8
R. Liptser. Bene\v s condition for discontinuous exponential martingale. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 144-154. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a8/