A probabilistic approximation of the Cauchy problem solution of some evolution equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 111-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In our paper we construct an analogy of a probabilistic representation of the Cauchy problem solution of the equation $\frac{\partial u}{\partial t}+\frac{\sigma^2}2\frac{\partial^2u}{\partial x^2}+f(x)u=0$, where $\sigma$ is a complex number.
@article{ZNSL_2011_396_a7,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {A probabilistic approximation of the {Cauchy} problem solution of some evolution equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--143},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - A probabilistic approximation of the Cauchy problem solution of some evolution equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 111
EP  - 143
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/
LA  - ru
ID  - ZNSL_2011_396_a7
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T A probabilistic approximation of the Cauchy problem solution of some evolution equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 111-143
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/
%G ru
%F ZNSL_2011_396_a7
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. A probabilistic approximation of the Cauchy problem solution of some evolution equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 111-143. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/

[1] N. V. Smorodina, M. M. Faddeev, “Veroyatnostnoe predstavlenie reshenii nekotorogo klassa evolyutsionnykh uravnenii”, Zap. nauchn. semin. POMI, 384, 2010, 238–266 | MR

[2] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR

[3] H. Doss, “Sur une résolution stochastique de l'equation de Schrödinger à coefficients analytiques”, Commun. Math. Phys., 73 (1980), 247–264 | DOI | MR | Zbl

[4] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, Nauka, M., 1958 | Zbl

[5] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v funktsionalnykh prostranstvakh, Nauka, M., 1983 | MR

[6] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986 | MR | Zbl

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, Mir, M., 1978 | MR