A probabilistic approximation of the Cauchy problem solution of some evolution equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 111-143
Voir la notice de l'article provenant de la source Math-Net.Ru
In our paper we construct an analogy of a probabilistic representation of the Cauchy problem solution of the equation $\frac{\partial u}{\partial t}+\frac{\sigma^2}2\frac{\partial^2u}{\partial x^2}+f(x)u=0$, where $\sigma$ is a complex number.
@article{ZNSL_2011_396_a7,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {A probabilistic approximation of the {Cauchy} problem solution of some evolution equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {111--143},
publisher = {mathdoc},
volume = {396},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - A probabilistic approximation of the Cauchy problem solution of some evolution equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 111 EP - 143 VL - 396 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/ LA - ru ID - ZNSL_2011_396_a7 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T A probabilistic approximation of the Cauchy problem solution of some evolution equations %J Zapiski Nauchnykh Seminarov POMI %D 2011 %P 111-143 %V 396 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/ %G ru %F ZNSL_2011_396_a7
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. A probabilistic approximation of the Cauchy problem solution of some evolution equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 111-143. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a7/