Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 93-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Estimates for the rate of strong Gaussian approximation in the invariance principle in the Hilbert space for sums of i.i.d. random vectors are derived. It is shown that they are optimal with respect to the order if the sequence of eigenvalues of the covariance operator of summands decreases slowly.
@article{ZNSL_2011_396_a5,
     author = {A. Yu. Zaitsev},
     title = {Optimal estimates for the rate of strong {Gaussian} approximation in the infinite dimensional invariance principle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--101},
     year = {2011},
     volume = {396},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2011
SP  - 93
EP  - 101
VL  - 396
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/
LA  - ru
ID  - ZNSL_2011_396_a5
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle
%J Zapiski Nauchnykh Seminarov POMI
%D 2011
%P 93-101
%V 396
%U http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/
%G ru
%F ZNSL_2011_396_a5
A. Yu. Zaitsev. Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 93-101. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/

[1] A. A. Borovkov, A. I. Sakhanenko, “Ob otsenkakh skorosti skhodimosti v printsipe invariantnosti dlya banakhovykh prostranstv”, Teoriya veroyatn. i ee primen., 25:4 (1980), 734–744 | MR | Zbl

[2] K. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti dlya gilbertova prostranstva”, Teoriya veroyatn. i ee primen., 29:3 (1984), 532–535 | MR | Zbl

[3] F. Götze, A. Yu. Zaitsev, “Bounds for the rate of strong approximation in the multidimensional invariance principle”, Teoriya veroyatn. i ee primen., 53:1 (2008), 100–123 | DOI | MR

[4] F. Gëttse, A. Yu. Zaitsev, “Tochnost approksimatsii v mnogomernom printsipe invariantnosti dlya summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov s konechnymi momentami”, Zap. nauchn. semin. POMI, 368, 2009, 110–121 | MR

[5] F. Gëttse, A. Yu. Zaitsev, “Otsenki tochnosti silnoi approksimatsii v gilbertovom prostranstve”, Sibirskii matem. zhurnal, 52:4 (2011), 796–808 | MR

[6] H. P. Rosenthal, “On the subspaces of $L_p$ $(p>2)$ spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl

[7] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR

[8] A. I. Sakhanenko, “Simple method of obtaining estimates in the invariance principle”, Lect Notes Math., 1299, 1987, 430–443 | DOI | MR

[9] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 223–245 | MR | Zbl

[10] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1976 | MR

[11] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 | DOI | MR | Zbl

[12] A. Yu. Zaitsev, “Tochnost silnoi gaussovskoi approksimatsii dlya summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. POMI, 364, 2009, 148–165 | MR | Zbl