@article{ZNSL_2011_396_a5,
author = {A. Yu. Zaitsev},
title = {Optimal estimates for the rate of strong {Gaussian} approximation in the infinite dimensional invariance principle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {93--101},
year = {2011},
volume = {396},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/}
}
TY - JOUR AU - A. Yu. Zaitsev TI - Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle JO - Zapiski Nauchnykh Seminarov POMI PY - 2011 SP - 93 EP - 101 VL - 396 UR - http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/ LA - ru ID - ZNSL_2011_396_a5 ER -
A. Yu. Zaitsev. Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 17, Tome 396 (2011), pp. 93-101. http://geodesic.mathdoc.fr/item/ZNSL_2011_396_a5/
[1] A. A. Borovkov, A. I. Sakhanenko, “Ob otsenkakh skorosti skhodimosti v printsipe invariantnosti dlya banakhovykh prostranstv”, Teoriya veroyatn. i ee primen., 25:4 (1980), 734–744 | MR | Zbl
[2] K. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti dlya gilbertova prostranstva”, Teoriya veroyatn. i ee primen., 29:3 (1984), 532–535 | MR | Zbl
[3] F. Götze, A. Yu. Zaitsev, “Bounds for the rate of strong approximation in the multidimensional invariance principle”, Teoriya veroyatn. i ee primen., 53:1 (2008), 100–123 | DOI | MR
[4] F. Gëttse, A. Yu. Zaitsev, “Tochnost approksimatsii v mnogomernom printsipe invariantnosti dlya summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov s konechnymi momentami”, Zap. nauchn. semin. POMI, 368, 2009, 110–121 | MR
[5] F. Gëttse, A. Yu. Zaitsev, “Otsenki tochnosti silnoi approksimatsii v gilbertovom prostranstve”, Sibirskii matem. zhurnal, 52:4 (2011), 796–808 | MR
[6] H. P. Rosenthal, “On the subspaces of $L_p$ $(p>2)$ spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl
[7] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR
[8] A. I. Sakhanenko, “Simple method of obtaining estimates in the invariance principle”, Lect Notes Math., 1299, 1987, 430–443 | DOI | MR
[9] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability (Seattle, WA, 1999), v. II, Progr. Probab., 47, Birkhäuser Boston, Boston, MA, 2000, 223–245 | MR | Zbl
[10] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1976 | MR
[11] A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments”, ESAIM: Probability and Statistics, 2 (1998), 41–108 | DOI | MR | Zbl
[12] A. Yu. Zaitsev, “Tochnost silnoi gaussovskoi approksimatsii dlya summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. POMI, 364, 2009, 148–165 | MR | Zbl